Skip to main content
Journal cover image

Dissolution Heterogeneity Observed in Anisotropic Ruthenium Dioxide Nanocrystals via Liquid-Phase Transmission Electron Microscopy.

Publication ,  Journal Article
Vigil, SA; Moreno-Hernandez, IA
Published in: Journal of the American Chemical Society
April 2024

Noble metal oxides such as ruthenium dioxide are highly active electrocatalysts for anodic reactions in acidic electrolytes, but dissolution during electrochemical operation impedes wide-scale applications in renewable energy technologies. Improving the fundamental understanding of the dissolution dynamics of application-relevant morphologies such as nanocrystals is critical for the grid-scale implementation of these materials. Herein, we report the nanoscale heterogeneity observed via liquid-phase transmission electron microscopy during ruthenium dioxide nanocrystal dissolution under oxidizing conditions. Single-crystalline ruthenium dioxide nanocrystals enabled the direct observation of dissolution along different crystallographic facets, allowing an unprecedented direct comparison of crystal facet stability. The nanoscale observations revealed substantial heterogeneity in the relative stability of crystallographic facets across different nanocrystals, attributed to the nanoscale strains present in these crystals. These findings highlight the importance of nanoscale heterogeneity in determining macroscale properties such as electrocatalyst stability and provide a characterization methodology that can be integrated into next-generation electrocatalyst discovery efforts.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

April 2024

Related Subject Headings

  • General Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Vigil, S. A., & Moreno-Hernandez, I. A. (2024). Dissolution Heterogeneity Observed in Anisotropic Ruthenium Dioxide Nanocrystals via Liquid-Phase Transmission Electron Microscopy. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.3c13709
Vigil, S Avery, and Ivan A. Moreno-Hernandez. “Dissolution Heterogeneity Observed in Anisotropic Ruthenium Dioxide Nanocrystals via Liquid-Phase Transmission Electron Microscopy.Journal of the American Chemical Society, April 2024. https://doi.org/10.1021/jacs.3c13709.
Vigil, S. Avery, and Ivan A. Moreno-Hernandez. “Dissolution Heterogeneity Observed in Anisotropic Ruthenium Dioxide Nanocrystals via Liquid-Phase Transmission Electron Microscopy.Journal of the American Chemical Society, Apr. 2024. Epmc, doi:10.1021/jacs.3c13709.
Journal cover image

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

April 2024

Related Subject Headings

  • General Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences