Skip to main content
Journal cover image

A biomimetic synthetic feeder layer supports the proliferation and self-renewal of mouse embryonic stem cells.

Publication ,  Journal Article
López-Fagundo, C; Livi, LL; Ramchal, T; Darling, EM; Hoffman-Kim, D
Published in: Acta Biomater
July 15, 2016

UNLABELLED: Successful realization of the enormous potential of pluripotent stem cells in regenerative medicine demands the development of well-defined culture conditions. Maintenance of embryonic stem cells (ESCs) typically requires co-culture with feeder layer cells, generally mouse embryonic fibroblasts (MEFs). Concerns about xenogeneic pathogen contamination and immune reaction to feeder cells underlie the need for ensuring the safety and efficacy of future stem cell-based products through the development of a controlled culture environment. To gain insight into the effectiveness of MEF layers, here we have developed a biomimetic synthetic feeder layer (BSFL) that is acellular and replicates the stiffness and topography of MEFs. The mechanical properties of MEFs were measured using atomic force microscopy. The average Young's modulus of the MEF monolayers was replicated using tunable polyacrylamide (PA) gels. BSFLs replicated topographical features of the MEFs, including cellular, subcellular, and cytoskeletal features. On BSFLs, mouse ESCs adhered and formed compact round colonies; similar to on MEF controls but not on Flat PA. ESCs on BSFLs maintained their pluripotency and self-renewal across passages, formed embryoid bodies and differentiated into progenitors of the three germ layers. This acellular biomimetic synthetic feeder layer supports stem cell culture without requiring co-culture of live xenogeneic feeder cells, and provides a versatile, tailorable platform for investigating stem cell growth. STATEMENT OF SIGNIFICANCE: Embryonic stem cells have enormous potential to aid therapeutics, because they can renew themselves and become different cell types. This study addresses a key challenge for ESC use - growing them safely for human patients. ESCs typically grow with a feeder layer of mouse fibroblasts. Since patients have a risk of immune response to feeder layer cells, we have developed a material to mimic the feeder layer and eliminate this risk. We investigated the influence of feeder layer topography and stiffness on mouse ESCs. While the biomimetic synthetic feeder layer contains no live cells, it replicates the stiffness and topography of feeder layer cells. Significantly, ESCs grown on BSFLs retain their abilities to grow and become multiple cell types.

Duke Scholars

Published In

Acta Biomater

DOI

EISSN

1878-7568

Publication Date

July 15, 2016

Volume

39

Start / End Page

55 / 64

Location

England

Related Subject Headings

  • Mouse Embryonic Stem Cells
  • Mice
  • Elastic Modulus
  • Cell Culture Techniques
  • Biomimetic Materials
  • Biomedical Engineering
  • Animals
  • Acrylic Resins
 

Citation

APA
Chicago
ICMJE
MLA
NLM
López-Fagundo, C., Livi, L. L., Ramchal, T., Darling, E. M., & Hoffman-Kim, D. (2016). A biomimetic synthetic feeder layer supports the proliferation and self-renewal of mouse embryonic stem cells. Acta Biomater, 39, 55–64. https://doi.org/10.1016/j.actbio.2016.04.047
López-Fagundo, Cristina, Liane L. Livi, Talisha Ramchal, Eric M. Darling, and Diane Hoffman-Kim. “A biomimetic synthetic feeder layer supports the proliferation and self-renewal of mouse embryonic stem cells.Acta Biomater 39 (July 15, 2016): 55–64. https://doi.org/10.1016/j.actbio.2016.04.047.
López-Fagundo C, Livi LL, Ramchal T, Darling EM, Hoffman-Kim D. A biomimetic synthetic feeder layer supports the proliferation and self-renewal of mouse embryonic stem cells. Acta Biomater. 2016 Jul 15;39:55–64.
López-Fagundo, Cristina, et al. “A biomimetic synthetic feeder layer supports the proliferation and self-renewal of mouse embryonic stem cells.Acta Biomater, vol. 39, July 2016, pp. 55–64. Pubmed, doi:10.1016/j.actbio.2016.04.047.
López-Fagundo C, Livi LL, Ramchal T, Darling EM, Hoffman-Kim D. A biomimetic synthetic feeder layer supports the proliferation and self-renewal of mouse embryonic stem cells. Acta Biomater. 2016 Jul 15;39:55–64.
Journal cover image

Published In

Acta Biomater

DOI

EISSN

1878-7568

Publication Date

July 15, 2016

Volume

39

Start / End Page

55 / 64

Location

England

Related Subject Headings

  • Mouse Embryonic Stem Cells
  • Mice
  • Elastic Modulus
  • Cell Culture Techniques
  • Biomimetic Materials
  • Biomedical Engineering
  • Animals
  • Acrylic Resins