Asymptotics of the solution to the perfect conductivity problem with p-Laplacian
Publication
, Journal Article
Dong, H; Yang, Z; Zhu, H
Published in: Mathematische Annalen
December 1, 2024
We study the perfect conductivity problem with closely spaced perfect conductors embedded in a homogeneous matrix where the current-electric field relation is the power law J=σ|E|p-2E. The gradient of solutions may be arbitrarily large as ε, the distance between inclusions, approaches to 0. To characterize this singular behavior of the gradient in the narrow region between two inclusions, we capture the leading order term of the gradient. This is the first gradient asymptotics result on the nonlinear perfect conductivity problem.
Duke Scholars
Published In
Mathematische Annalen
DOI
EISSN
1432-1807
ISSN
0025-5831
Publication Date
December 1, 2024
Volume
390
Issue
4
Start / End Page
5005 / 5051
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Dong, H., Yang, Z., & Zhu, H. (2024). Asymptotics of the solution to the perfect conductivity problem with p-Laplacian. Mathematische Annalen, 390(4), 5005–5051. https://doi.org/10.1007/s00208-024-02876-y
Dong, H., Z. Yang, and H. Zhu. “Asymptotics of the solution to the perfect conductivity problem with p-Laplacian.” Mathematische Annalen 390, no. 4 (December 1, 2024): 5005–51. https://doi.org/10.1007/s00208-024-02876-y.
Dong H, Yang Z, Zhu H. Asymptotics of the solution to the perfect conductivity problem with p-Laplacian. Mathematische Annalen. 2024 Dec 1;390(4):5005–51.
Dong, H., et al. “Asymptotics of the solution to the perfect conductivity problem with p-Laplacian.” Mathematische Annalen, vol. 390, no. 4, Dec. 2024, pp. 5005–51. Scopus, doi:10.1007/s00208-024-02876-y.
Dong H, Yang Z, Zhu H. Asymptotics of the solution to the perfect conductivity problem with p-Laplacian. Mathematische Annalen. 2024 Dec 1;390(4):5005–5051.
Published In
Mathematische Annalen
DOI
EISSN
1432-1807
ISSN
0025-5831
Publication Date
December 1, 2024
Volume
390
Issue
4
Start / End Page
5005 / 5051
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics