EIGENPERIODS AND THE MODULI OF POINTS IN THE LINE
Publication
, Journal Article
Deng, H; Gallardo, P
Published in: Nagoya Mathematical Journal
September 1, 2025
We study the period map of configurations of n points on the projective line constructed via a cyclic cover branching along these points. By considering the decomposition of its Hodge structure into eigenspaces, we establish the codimension of the locus where the eigenperiod map is still pure. Furthermore, we show that the period map extends to the divisors of a specific moduli space of weighted stable rational curves, and that this extension satisfies a local Torelli map along its fibers.
Published In
Nagoya Mathematical Journal
DOI
EISSN
2152-6842
ISSN
0027-7630
Publication Date
September 1, 2025
Volume
259
Start / End Page
524 / 547
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Deng, H., & Gallardo, P. (2025). EIGENPERIODS AND THE MODULI OF POINTS IN THE LINE. Nagoya Mathematical Journal, 259, 524–547. https://doi.org/10.1017/nmj.2025.7
Deng, H., and P. Gallardo. “EIGENPERIODS AND THE MODULI OF POINTS IN THE LINE.” Nagoya Mathematical Journal 259 (September 1, 2025): 524–47. https://doi.org/10.1017/nmj.2025.7.
Deng H, Gallardo P. EIGENPERIODS AND THE MODULI OF POINTS IN THE LINE. Nagoya Mathematical Journal. 2025 Sep 1;259:524–47.
Deng, H., and P. Gallardo. “EIGENPERIODS AND THE MODULI OF POINTS IN THE LINE.” Nagoya Mathematical Journal, vol. 259, Sept. 2025, pp. 524–47. Scopus, doi:10.1017/nmj.2025.7.
Deng H, Gallardo P. EIGENPERIODS AND THE MODULI OF POINTS IN THE LINE. Nagoya Mathematical Journal. 2025 Sep 1;259:524–547.
Published In
Nagoya Mathematical Journal
DOI
EISSN
2152-6842
ISSN
0027-7630
Publication Date
September 1, 2025
Volume
259
Start / End Page
524 / 547
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics