Skip to main content
Journal cover image

Octahedral coordinates from the Wirtinger presentation

Publication ,  Journal Article
McPhail-Snyder, C
Published in: Geometriae Dedicata
August 1, 2025

Let ρ be a representation of a knot group (or more generally, the fundamental group of a tangle complement) into SL2(C) expressed in terms of the Wirtinger generators of a diagram D. This diagram also determines an ideal triangulation of the complement called the octahedral decomposition. ρ induces a hyperbolic structure on the complement of D, and in this note we give a direct algebraic formula for the geometric parameters of the octahedral decomposition induced by this structure. Our formula gives a new, explicit criterion for whether ρ occurs as a critical point of the diagram’s Neumann–Zagier–Yokota potential function.

Duke Scholars

Published In

Geometriae Dedicata

DOI

EISSN

1572-9168

ISSN

0046-5755

Publication Date

August 1, 2025

Volume

219

Issue

4

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
McPhail-Snyder, C. (2025). Octahedral coordinates from the Wirtinger presentation. Geometriae Dedicata, 219(4). https://doi.org/10.1007/s10711-025-01012-7
McPhail-Snyder, C. “Octahedral coordinates from the Wirtinger presentation.” Geometriae Dedicata 219, no. 4 (August 1, 2025). https://doi.org/10.1007/s10711-025-01012-7.
McPhail-Snyder C. Octahedral coordinates from the Wirtinger presentation. Geometriae Dedicata. 2025 Aug 1;219(4).
McPhail-Snyder, C. “Octahedral coordinates from the Wirtinger presentation.” Geometriae Dedicata, vol. 219, no. 4, Aug. 2025. Scopus, doi:10.1007/s10711-025-01012-7.
McPhail-Snyder C. Octahedral coordinates from the Wirtinger presentation. Geometriae Dedicata. 2025 Aug 1;219(4).
Journal cover image

Published In

Geometriae Dedicata

DOI

EISSN

1572-9168

ISSN

0046-5755

Publication Date

August 1, 2025

Volume

219

Issue

4

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics