Octahedral coordinates from the Wirtinger presentation
Publication
, Journal Article
McPhail-Snyder, C
Published in: Geometriae Dedicata
August 1, 2025
Let ρ be a representation of a knot group (or more generally, the fundamental group of a tangle complement) into SL2(C) expressed in terms of the Wirtinger generators of a diagram D. This diagram also determines an ideal triangulation of the complement called the octahedral decomposition. ρ induces a hyperbolic structure on the complement of D, and in this note we give a direct algebraic formula for the geometric parameters of the octahedral decomposition induced by this structure. Our formula gives a new, explicit criterion for whether ρ occurs as a critical point of the diagram’s Neumann–Zagier–Yokota potential function.
Duke Scholars
Published In
Geometriae Dedicata
DOI
EISSN
1572-9168
ISSN
0046-5755
Publication Date
August 1, 2025
Volume
219
Issue
4
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
McPhail-Snyder, C. (2025). Octahedral coordinates from the Wirtinger presentation. Geometriae Dedicata, 219(4). https://doi.org/10.1007/s10711-025-01012-7
McPhail-Snyder, C. “Octahedral coordinates from the Wirtinger presentation.” Geometriae Dedicata 219, no. 4 (August 1, 2025). https://doi.org/10.1007/s10711-025-01012-7.
McPhail-Snyder C. Octahedral coordinates from the Wirtinger presentation. Geometriae Dedicata. 2025 Aug 1;219(4).
McPhail-Snyder, C. “Octahedral coordinates from the Wirtinger presentation.” Geometriae Dedicata, vol. 219, no. 4, Aug. 2025. Scopus, doi:10.1007/s10711-025-01012-7.
McPhail-Snyder C. Octahedral coordinates from the Wirtinger presentation. Geometriae Dedicata. 2025 Aug 1;219(4).
Published In
Geometriae Dedicata
DOI
EISSN
1572-9168
ISSN
0046-5755
Publication Date
August 1, 2025
Volume
219
Issue
4
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics