Skip to main content

Metrics reloaded: recommendations for image analysis validation.

Publication ,  Journal Article
Maier-Hein, L; Reinke, A; Godau, P; Tizabi, MD; Buettner, F; Christodoulou, E; Glocker, B; Isensee, F; Kleesiek, J; Kozubek, M; Reyes, M ...
Published in: Nature methods
February 2024

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.

Duke Scholars

Published In

Nature methods

DOI

EISSN

1548-7105

ISSN

1548-7091

Publication Date

February 2024

Volume

21

Issue

2

Start / End Page

195 / 212

Related Subject Headings

  • Semantics
  • Machine Learning
  • Image Processing, Computer-Assisted
  • Developmental Biology
  • Algorithms
  • 31 Biological sciences
  • 11 Medical and Health Sciences
  • 10 Technology
  • 06 Biological Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Maier-Hein, L., Reinke, A., Godau, P., Tizabi, M. D., Buettner, F., Christodoulou, E., … Jäger, P. F. (2024). Metrics reloaded: recommendations for image analysis validation. Nature Methods, 21(2), 195–212. https://doi.org/10.1038/s41592-023-02151-z
Maier-Hein, Lena, Annika Reinke, Patrick Godau, Minu D. Tizabi, Florian Buettner, Evangelia Christodoulou, Ben Glocker, et al. “Metrics reloaded: recommendations for image analysis validation.Nature Methods 21, no. 2 (February 2024): 195–212. https://doi.org/10.1038/s41592-023-02151-z.
Maier-Hein L, Reinke A, Godau P, Tizabi MD, Buettner F, Christodoulou E, et al. Metrics reloaded: recommendations for image analysis validation. Nature methods. 2024 Feb;21(2):195–212.
Maier-Hein, Lena, et al. “Metrics reloaded: recommendations for image analysis validation.Nature Methods, vol. 21, no. 2, Feb. 2024, pp. 195–212. Epmc, doi:10.1038/s41592-023-02151-z.
Maier-Hein L, Reinke A, Godau P, Tizabi MD, Buettner F, Christodoulou E, Glocker B, Isensee F, Kleesiek J, Kozubek M, Reyes M, Riegler MA, Wiesenfarth M, Kavur AE, Sudre CH, Baumgartner M, Eisenmann M, Heckmann-Nötzel D, Rädsch T, Acion L, Antonelli M, Arbel T, Bakas S, Benis A, Blaschko MB, Cardoso MJ, Cheplygina V, Cimini BA, Collins GS, Farahani K, Ferrer L, Galdran A, van Ginneken B, Haase R, Hashimoto DA, Hoffman MM, Huisman M, Jannin P, Kahn CE, Kainmueller D, Kainz B, Karargyris A, Karthikesalingam A, Kofler F, Kopp-Schneider A, Kreshuk A, Kurc T, Landman BA, Litjens G, Madani A, Maier-Hein K, Martel AL, Mattson P, Meijering E, Menze B, Moons KGM, Müller H, Nichyporuk B, Nickel F, Petersen J, Rajpoot N, Rieke N, Saez-Rodriguez J, Sánchez CI, Shetty S, van Smeden M, Summers RM, Taha AA, Tiulpin A, Tsaftaris SA, Van Calster B, Varoquaux G, Jäger PF. Metrics reloaded: recommendations for image analysis validation. Nature methods. 2024 Feb;21(2):195–212.

Published In

Nature methods

DOI

EISSN

1548-7105

ISSN

1548-7091

Publication Date

February 2024

Volume

21

Issue

2

Start / End Page

195 / 212

Related Subject Headings

  • Semantics
  • Machine Learning
  • Image Processing, Computer-Assisted
  • Developmental Biology
  • Algorithms
  • 31 Biological sciences
  • 11 Medical and Health Sciences
  • 10 Technology
  • 06 Biological Sciences