Skip to main content
Journal cover image

The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex.

Publication ,  Journal Article
Labosky, PA; Winnier, GE; Jetton, TL; Hargett, L; Ryan, AK; Rosenfeld, MG; Parlow, AF; Hogan, BL
Published in: Development
April 1997

The mouse Mf3 gene, also known as Fkh5 and HFH-e5.1, encodes a winged helix/forkhead transcription factor. In the early embryo, transcripts for Mf3 are restricted to the presomitic mesoderm and anterior neurectoderm and mesoderm. By 9.5 days post coitum, expression in the nervous system is predominantly in the diencephalon, midbrain and neural tube. After midgestation, the highest level of mRNA is in the mammillary bodies, the posterior-most part of the hypothalamus. Mice homozygous for a deletion of the mf3 locus on a [129 x Black Swiss] background display variable phenotypes consistent with a requirement for the gene at several stages of embryonic and postnatal development. Approximately six percent of the mf3-/- embryos show an open neural tube in the diencephalon and midbrain region, and another five percent show a severe reduction of the posterior body axis; both these classes of affected embryos die in utero. Surviving homozygotes have an apparently normal phenotype at birth. Postnatally, however, mf3-/- pups are severely growth retarded and approximately one third die before weaning. This growth defect is not a direct result of lack of circulating growth hormone or thyrotropin. Mice that survive to weaning are healthy, but they show an abnormal clasping of the hindfeet when suspended by the tail. Although much smaller than normal, the mice are fertile. However, mf3-/- females cannot eject their milk supply to feed their pups. This nursing defect can be corrected with interperitoneal injections of oxytocin. These results provide evidence that Mf3 is required for normal hypothalamus development and suggest that Mf3 may play a role in postnatal growth and lactation.

Duke Scholars

Published In

Development

DOI

ISSN

0950-1991

Publication Date

April 1997

Volume

124

Issue

7

Start / End Page

1263 / 1274

Location

England

Related Subject Headings

  • Transcription Factors
  • Reflex
  • Radioimmunoassay
  • Pituitary Gland
  • Phenotype
  • Milk Ejection
  • Mice, Mutant Strains
  • Mice, Inbred DBA
  • Mice, Inbred C57BL
  • Mice
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Labosky, P. A., Winnier, G. E., Jetton, T. L., Hargett, L., Ryan, A. K., Rosenfeld, M. G., … Hogan, B. L. (1997). The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex. Development, 124(7), 1263–1274. https://doi.org/10.1242/dev.124.7.1263
Labosky, P. A., G. E. Winnier, T. L. Jetton, L. Hargett, A. K. Ryan, M. G. Rosenfeld, A. F. Parlow, and B. L. Hogan. “The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex.Development 124, no. 7 (April 1997): 1263–74. https://doi.org/10.1242/dev.124.7.1263.
Labosky PA, Winnier GE, Jetton TL, Hargett L, Ryan AK, Rosenfeld MG, et al. The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex. Development. 1997 Apr;124(7):1263–74.
Labosky, P. A., et al. “The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex.Development, vol. 124, no. 7, Apr. 1997, pp. 1263–74. Pubmed, doi:10.1242/dev.124.7.1263.
Labosky PA, Winnier GE, Jetton TL, Hargett L, Ryan AK, Rosenfeld MG, Parlow AF, Hogan BL. The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex. Development. 1997 Apr;124(7):1263–1274.
Journal cover image

Published In

Development

DOI

ISSN

0950-1991

Publication Date

April 1997

Volume

124

Issue

7

Start / End Page

1263 / 1274

Location

England

Related Subject Headings

  • Transcription Factors
  • Reflex
  • Radioimmunoassay
  • Pituitary Gland
  • Phenotype
  • Milk Ejection
  • Mice, Mutant Strains
  • Mice, Inbred DBA
  • Mice, Inbred C57BL
  • Mice