Skip to main content

Serial in vivo observations of cerebral vasculature after treatment with a large single fraction of radiation.

Publication ,  Journal Article
Acker, JC; Marks, LB; Spencer, DP; Yang, W; Avery, MA; Dodge, RK; Rosner, GL; Dewhirst, MW
Published in: Radiat Res
April 1998

To test whether single high doses of radiation, similar to those used with radiosurgery, given to normal cerebral vasculature can cause changes in leukocyte-vessel wall interactions and tissue perfusion, a rat pial window model was used to view the cerebral vasculature, facilitating repeated in vivo observations of microcirculatory function. An attachment for a 4 MV linear accelerator was designed to deliver a well-collimated 2.2-mm beam of radiation to a selected region of rat brain. Sequential measurements of leukocyte-endothelial cell interactions, relative change in blood flow with laser Doppler flowmetry and vessel length density were performed prior to and at 24 h and 3 weeks after treatment with 15, 22.5 or 30 Gy, given in a single fraction. Significant increases in leukocyte-endothelial cell interactions were seen 24 h and 3 weeks after irradiation that were dependent on dose, particularly in arteries. Changes were apparent in both arteries and veins at 24 h, but by 3 weeks the effects in arteries predominated. Decreases in vessel length density and blood flow were observed and became greater with time after treatment. A variety of morphological changes were observed in irradiated arteries, including formation of aneurysmal structures, endothelial denudation and thrombus formation. These results suggest that: (1) An increase in leukocyte-vessel wall interactions occurs after irradiation; (2) cerebral arterioles are more sensitive than veins to radiation administered in this fashion; and (3) the increase in leukocyte-vessel wall interactions likely contributes to reduction of or loss of arteriolar flow, with resultant loss of flow to dependent microvascular vessels.

Duke Scholars

Published In

Radiat Res

ISSN

0033-7587

Publication Date

April 1998

Volume

149

Issue

4

Start / End Page

350 / 359

Location

United States

Related Subject Headings

  • Time Factors
  • Rats, Sprague-Dawley
  • Rats
  • Radiation Injuries, Experimental
  • Oncology & Carcinogenesis
  • Leukocytes
  • Endothelium, Vascular
  • Dose-Response Relationship, Radiation
  • Cerebrovascular Circulation
  • Cell Adhesion
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Acker, J. C., Marks, L. B., Spencer, D. P., Yang, W., Avery, M. A., Dodge, R. K., … Dewhirst, M. W. (1998). Serial in vivo observations of cerebral vasculature after treatment with a large single fraction of radiation. Radiat Res, 149(4), 350–359.
Acker, J. C., L. B. Marks, D. P. Spencer, W. Yang, M. A. Avery, R. K. Dodge, G. L. Rosner, and M. W. Dewhirst. “Serial in vivo observations of cerebral vasculature after treatment with a large single fraction of radiation.Radiat Res 149, no. 4 (April 1998): 350–59.
Acker JC, Marks LB, Spencer DP, Yang W, Avery MA, Dodge RK, et al. Serial in vivo observations of cerebral vasculature after treatment with a large single fraction of radiation. Radiat Res. 1998 Apr;149(4):350–9.
Acker, J. C., et al. “Serial in vivo observations of cerebral vasculature after treatment with a large single fraction of radiation.Radiat Res, vol. 149, no. 4, Apr. 1998, pp. 350–59.
Acker JC, Marks LB, Spencer DP, Yang W, Avery MA, Dodge RK, Rosner GL, Dewhirst MW. Serial in vivo observations of cerebral vasculature after treatment with a large single fraction of radiation. Radiat Res. 1998 Apr;149(4):350–359.

Published In

Radiat Res

ISSN

0033-7587

Publication Date

April 1998

Volume

149

Issue

4

Start / End Page

350 / 359

Location

United States

Related Subject Headings

  • Time Factors
  • Rats, Sprague-Dawley
  • Rats
  • Radiation Injuries, Experimental
  • Oncology & Carcinogenesis
  • Leukocytes
  • Endothelium, Vascular
  • Dose-Response Relationship, Radiation
  • Cerebrovascular Circulation
  • Cell Adhesion