Skip to main content
Journal cover image

Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits.

Publication ,  Journal Article
McKay, JK; Richards, JH; Mitchell-Olds, T
Published in: Molecular ecology
May 2003

We examined patterns of genetic variance and covariance in two traits (i) carbon stable isotope ratio delta13C (dehydration avoidance) and (ii) time to flowering (drought escape), both of which are putative adaptations to local water availability. Greenhouse screening of 39 genotypes of Arabidopsis thaliana native to habitats spanning a wide range of climatic conditions, revealed a highly significant positive genetic correlation between delta13C and flowering time. Studies in a range of C3 annuals have also reported large positive correlations, suggesting the presence of a genetically based trade-off between mechanisms of dehydration avoidance (delta13C) and drought escape (early flowering). We examined the contribution of pleiotropy by using a combination of mutant and near-isogenic lines to test for positive mutational covariance between delta13C and flowering time. Ecophysiological mutants generally showed variation in delta13C but not flowering time. However, flowering time mutants generally demonstrated pleiotropic effects consistent with natural variation. Mutations that caused later flowering also typically resulted in less negative delta13C and thus probably higher water use efficiency. We found strong evidence for pleiotropy using near-isogenic lines of Frigida and Flowering locus C, cloned loci known to be responsible for natural variation in flowering time. These data suggest the correlated evolution of delta13C and flowering time is explained in part by the fixation of pleiotropic alleles that alter both delta13C and time to flowering.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Molecular ecology

DOI

EISSN

1365-294X

ISSN

0962-1083

Publication Date

May 2003

Volume

12

Issue

5

Start / End Page

1137 / 1151

Related Subject Headings

  • Genetic Variation
  • Flowers
  • Evolutionary Biology
  • Disasters
  • Carbon Isotopes
  • Biological Evolution
  • Arabidopsis
  • Alleles
  • Adaptation, Biological
  • 31 Biological sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
McKay, J. K., Richards, J. H., & Mitchell-Olds, T. (2003). Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Molecular Ecology, 12(5), 1137–1151. https://doi.org/10.1046/j.1365-294x.2003.01833.x
McKay, J. K., J. H. Richards, and T. Mitchell-Olds. “Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits.Molecular Ecology 12, no. 5 (May 2003): 1137–51. https://doi.org/10.1046/j.1365-294x.2003.01833.x.
McKay, J. K., et al. “Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits.Molecular Ecology, vol. 12, no. 5, May 2003, pp. 1137–51. Epmc, doi:10.1046/j.1365-294x.2003.01833.x.
McKay JK, Richards JH, Mitchell-Olds T. Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Molecular ecology. 2003 May;12(5):1137–1151.
Journal cover image

Published In

Molecular ecology

DOI

EISSN

1365-294X

ISSN

0962-1083

Publication Date

May 2003

Volume

12

Issue

5

Start / End Page

1137 / 1151

Related Subject Headings

  • Genetic Variation
  • Flowers
  • Evolutionary Biology
  • Disasters
  • Carbon Isotopes
  • Biological Evolution
  • Arabidopsis
  • Alleles
  • Adaptation, Biological
  • 31 Biological sciences