Skip to main content

Molecular defects underlying the Kell null phenotype.

Publication ,  Journal Article
Lee, S; Russo, DC; Reiner, AP; Lee, JH; Sy, MY; Telen, MJ; Judd, WJ; Simon, P; Rodrigues, MJ; Chabert, T; Poole, J; Jovanovic-Srzentic, S ...
Published in: J Biol Chem
July 20, 2001

Expression of the Kell blood group system is dependent on two proteins, Kell and XK, that are linked by a single disulfide bond. Kell, a type II membrane glycoprotein, is a zinc endopeptidase, while XK, which has 10 transmembrane domains, is a putative membrane transporter. A rare phenotype termed Kell null (Ko) is characterized by the absence of Kell protein and Kell antigens from the red cell membrane and diminished amounts of XK protein. We determined the molecular basis of eight unrelated persons with Ko phenotypes by sequencing the coding and the intron-exon splice regions of KEL and, in some cases, analysis of mRNA transcripts and expression of mutants on the cell surface of transfected cells. Six subjects were homozygous: four with premature stop codons, one with a 5' splice site mutation, G to A, in intron 3, and one with an amino acid substitution (S676N) in exon 18. Two Ko persons with premature stop codons had identical mutations in exon 4 (R128Stop), another had a different mutation in exon 4 (C83Stop), and the fourth had a stop codon in exon 9 (Q348Stop). Two Ko persons were heterozygous for two mutations. One had a 5' splice site mutation (G to A) in intron 3 of one allele that caused aberrant splicing and exon skipping, and the other allele had an amino acid substitution in exon 10 (S363N). The other heterozygote had the same amino acid substitution in exon 10 (S363N) in one allele and a premature stop codon in exon 6 (R192Stop) in the other allele. The S363N and S676N mutants, expressed in 293T cells, were retained in a pre-Golgi compartment and were not transported to the cell surface, indicating that these mutations inhibit trafficking. We conclude that several different molecular defects cause the Kell null phenotype.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Biol Chem

DOI

ISSN

0021-9258

Publication Date

July 20, 2001

Volume

276

Issue

29

Start / End Page

27281 / 27289

Location

United States

Related Subject Headings

  • Sequence Homology, Amino Acid
  • Protein Transport
  • Polymerase Chain Reaction
  • Phenotype
  • Mutation
  • Molecular Sequence Data
  • Middle Aged
  • Kell Blood-Group System
  • Introns
  • Humans
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lee, S., Russo, D. C., Reiner, A. P., Lee, J. H., Sy, M. Y., Telen, M. J., … Redman, C. M. (2001). Molecular defects underlying the Kell null phenotype. J Biol Chem, 276(29), 27281–27289. https://doi.org/10.1074/jbc.M103433200
Lee, S., D. C. Russo, A. P. Reiner, J. H. Lee, M. Y. Sy, M. J. Telen, W. J. Judd, et al. “Molecular defects underlying the Kell null phenotype.J Biol Chem 276, no. 29 (July 20, 2001): 27281–89. https://doi.org/10.1074/jbc.M103433200.
Lee S, Russo DC, Reiner AP, Lee JH, Sy MY, Telen MJ, et al. Molecular defects underlying the Kell null phenotype. J Biol Chem. 2001 Jul 20;276(29):27281–9.
Lee, S., et al. “Molecular defects underlying the Kell null phenotype.J Biol Chem, vol. 276, no. 29, July 2001, pp. 27281–89. Pubmed, doi:10.1074/jbc.M103433200.
Lee S, Russo DC, Reiner AP, Lee JH, Sy MY, Telen MJ, Judd WJ, Simon P, Rodrigues MJ, Chabert T, Poole J, Jovanovic-Srzentic S, Levene C, Yahalom V, Redman CM. Molecular defects underlying the Kell null phenotype. J Biol Chem. 2001 Jul 20;276(29):27281–27289.

Published In

J Biol Chem

DOI

ISSN

0021-9258

Publication Date

July 20, 2001

Volume

276

Issue

29

Start / End Page

27281 / 27289

Location

United States

Related Subject Headings

  • Sequence Homology, Amino Acid
  • Protein Transport
  • Polymerase Chain Reaction
  • Phenotype
  • Mutation
  • Molecular Sequence Data
  • Middle Aged
  • Kell Blood-Group System
  • Introns
  • Humans