How to distribute a finite amount of insulation on a wall with nonuniform temperature
This paper shows that it is possible to distribute a finite amount of insulation in an optimal way that minimizes the overall heat transfer rate from a nonisothermal wall to the ambient. The optimal insulation thickness for a plane wall varies as the square root of the local wall-ambient temperature difference. Corresponding variational-calculus results are developed for cylindrical walls covered with insulation. The heat loss reduction associated with using the optimal thickness is greater when the wall is plane, as opposed to cylindrical, and when the wall temperature variation in the x direction has a greater second derivative, d2T/dx2. It is shown finally that the best insulation for a single-phase stream suspended in an environment of different temperature is the insulation with uniform thickness. © 1993 Pergamon Press Ltd.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences