Optimal tree-shaped networks for fluid flow in a disc-shaped body
In this paper we consider the fundamental problem of how to design a flow path with minimum overall resistance between one point (O) and many points situated equidistantly on a circle centered at O. The flow may proceed in either direction, from the center to the perimeter, or from the perimeter to the center. This problem is an integral component of the electronics cooling problem of how to bathe and cool with a single stream of coolant a disc-shaped area or volume that generates heat at every point. The smallest length scale of the flow structure is fixed (d), and represents the distance between two flow ports on the circular perimeter. The paper documents a large number of optimized dendritic flow structures that occupy a disc-shaped area of radius R. The flow is laminar and fully developed in every tube. The complexity of each structure is indicated by the number of ducts (n
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences