The concept of irreversibility in heat exchanger design: Counterflow heat exchangers for gas-to-gas applications
The thermal design of counterflow heat exchangers for gas-to-gas applications is based on the thermodynamic irreversibility rate or useful power no longer available as a result of heat exchanger frictional pressure drops and stream-to-stream temperature differences. The irreversibility (entropy production) concept establishes a direct relationship between the heat exchanger design parameters and the useful power wasted due to heat exchanger nonideality. The paper presents a heat exchanger design method for fixed or for minimum irreversibility (number of entropy generation units NS). In contrast with traditional design procedures, the amount of heat transferred between streams and the pumping power for each side become outputs of the Ns design approach. To illustrate the use of this method, the paper develops the design of regenerative heat exchangers with minimum heat transfer surface and with fixed irreversibility NS © 1977 by ASME.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4012 Fluid mechanics and thermal engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0904 Chemical Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4012 Fluid mechanics and thermal engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0904 Chemical Engineering