Transient natural convection between two zones in an insulated enclosure
The natural convection flow and heat transfer between two enclosures that communicate through a vertical opening is studied by considering the evolution of an enclosed fluid in which the left half is originally at a different temperature than the right half. Numerical experiments show that at sufficiently high Rayleigh numbers the ensuing flow is oscillatory. This and other features are anticipated on the basis of scale analysis. The time scales of the oscillation, the establishment of thermal stratification, and eventual thermal equilibrium are determined and tested numerically. At sufficiently high Rayleigh numbers the heat transfer between the communicating zones is by convection, in accordance with the constant-Stantonnumber trend pointed out by Jones and Otis (.1986). The range covered by the numerical experiments is 102 < Ra < 107, 0.71 < Pr < 100, and 0.25 < H/L < 1. © 1988 by ASME.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4012 Fluid mechanics and thermal engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0904 Chemical Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4012 Fluid mechanics and thermal engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0904 Chemical Engineering