Transport Through a Clay Barrier with the Contaminant Concentration Dependent Permeability
Transport of contaminants through clays is characterized by a very low dispersivity, but depends on the sensitivity of its intrinsic permeability to the contaminant's concentration. An additional constitutive relationship for a variable intrinsic permeability is thus adopted leading to a coupled system of equations for diffusive-advective transport in multicomponent liquid. A one-dimensional transport problem is solved using finite difference and Newton-Raphson procedure for nonlinear algebraic equations. The results indicate that although diffusion contributes to an increase of transport with respect to pure advection, the flux ultimately depends on end boundary conditions for concentration which, if low, may actually slow down the evolution of concentration and thus of permeability. Indeed, the advective component of flux may still remain secondary if the end portion of the layer remains unaffected by high concentrations. With no constraints on concentration at the bottom (zero concentration gradient boundary condition) and high concentration applied at the top, a significant shortening of the breakthrough time occurs.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4901 Applied mathematics
- 4005 Civil engineering
- 4004 Chemical engineering
- 0905 Civil Engineering
- 0904 Chemical Engineering
- 0102 Applied Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4901 Applied mathematics
- 4005 Civil engineering
- 4004 Chemical engineering
- 0905 Civil Engineering
- 0904 Chemical Engineering
- 0102 Applied Mathematics