Flowing partially penetrating well: Solution to a mixed-type boundary value problem
A new semi-analytic solution to the mixed-type boundary value problem for a flowing partially penetrating well with infinitesimal skin situated in an anisotropic aquifer is developed. The solution is suited to aquifers having a semi-infinite vertical extent or to packer tests with aquifer horizontal boundaries far enough from the tested area. The problem reduces to a system of dual integral equations (DE) and further to a deconvolution problem. Unlike the analogous Dagan's steady-state solution [Water Resour. Res. 1978; 14:929-34], our DE solution does not suffer from numerical oscillations. The new solution is validated by matching the corresponding finite-difference solution and is computationally much more efficient. An automated (Newton-Raphson) parameter identification algorithm is proposed for field test inversion, utilizing the DE solution for the forward model. The procedure is computationally efficient and converges to correct parameter values. A solution for the partially penetrating flowing well with no skin and a drawdown-drawdown discontinuous boundary condition, analogous to that by Novakowski [Can. Geotech. J. 1993; 30:600-6], is compared to the DE solution. The D-D solution leads to physically inconsistent infinite total flow rate to the well, when no skin effect is considered. The DE solution, on the other hand, produces accurate results.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4901 Applied mathematics
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0102 Applied Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4901 Applied mathematics
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0102 Applied Mathematics