An electromagnetic simulation environment
We present a general purpose simulator that includes electromagnetic scattering tools for buried targets and standard signal processing functionality. Additional modules for genetic or gradient optimization, parallel processing, and multi-aspect target detection via Hidden Markov Models are also available. The entire library is completely scriptable for customization and web enabled for publishing results on the internet. It is also extensible so that users can add modules that address their specific need. The tool runs on both Unix and Windows platforms and includes graphic modules for plotting results and images as well as three-dimensional visualization capabilities for displaying target meshes, currents, and scattered fields. Electromagnetic scattering is calculated via either the Method of Moments (MoM) for arbitrarily shaped three-dimensional perfectly electric conducting (PECs) or dielectric targets above or embedded within a lossy half space. The code uses the combined-field integral equations with the rigorous half-space dyadic Green's function computed via the method of complex images. The simulator offers coarsely parallel capabilities for distributing individual frequencies across a cluster of workstations with near linear speed-up.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering