Skip to main content
Journal cover image

Application of an antibody biochip for p53 detection and cancer diagnosis.

Publication ,  Journal Article
Askari, M; Alarie, JP; Moreno-Bondi, M; Vo-Dinh, T
Published in: Biotechnology progress
May 2001

Detection of the p53 tumor suppressor gene is important in early cancer diagnostics because alterations in the gene have been associated with carcinogenic manifestations in several tissue types in humans. We have developed an antibody-based detection instrument, the biochip, to detect the presence of the anti-p53 antibody in human serum. The design of this highly integrated detector system is based on miniaturized phototransistors having multiple optical sensing elements, amplifiers, discriminators, and logic circuitry on an IC board. The system utilizes laser excitation and fluorescence signals to detect complex formation between the p53 monoclonal antibody and the p53 antigen. Recognition antibodies are immobilized on a nylon membrane platform and incubated in solutions containing antigens labeled with Cy5, a fluorescent cyanine dye. Subsequently, this membrane is placed on the detection platform of the biochip and fluorescence signal is induced using a 632.8-nm He-Ne laser. Using this immuno-biochip, we have been able to detect binding of the p53 monoclonal antibody to the human p53 cancer protein in biological matrices. The performance of the integrated phototransistors and amplifier circuits of the biochip, previously evaluated through measurement of the signal output response for various concentrations of fluorescein-labeled molecules, have illustrated the linearity of the microchip necessary for quantitative analysis. The design of this biochip permits sensitive, selective and direct measurements of a variety of antigen-antibody formations at very low concentrations. Furthermore, the acquisitions of the qualitative and quantitative results are accomplished rapidly, in about 15 min. These features demonstrate the potential of this antibody-based biochip for simple, rapid and early biomedical diagnostics of cancer.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biotechnology progress

DOI

EISSN

1520-6033

ISSN

8756-7938

Publication Date

May 2001

Volume

17

Issue

3

Start / End Page

543 / 552

Related Subject Headings

  • Tumor Suppressor Protein p53
  • Sensitivity and Specificity
  • Neoplasms
  • Lasers
  • Immunoassay
  • Humans
  • Biotechnology
  • Biosensing Techniques
  • Antigen-Antibody Complex
  • Antibodies, Monoclonal
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Askari, M., Alarie, J. P., Moreno-Bondi, M., & Vo-Dinh, T. (2001). Application of an antibody biochip for p53 detection and cancer diagnosis. Biotechnology Progress, 17(3), 543–552. https://doi.org/10.1021/bp010008s
Askari, M., J. P. Alarie, M. Moreno-Bondi, and T. Vo-Dinh. “Application of an antibody biochip for p53 detection and cancer diagnosis.Biotechnology Progress 17, no. 3 (May 2001): 543–52. https://doi.org/10.1021/bp010008s.
Askari M, Alarie JP, Moreno-Bondi M, Vo-Dinh T. Application of an antibody biochip for p53 detection and cancer diagnosis. Biotechnology progress. 2001 May;17(3):543–52.
Askari, M., et al. “Application of an antibody biochip for p53 detection and cancer diagnosis.Biotechnology Progress, vol. 17, no. 3, May 2001, pp. 543–52. Epmc, doi:10.1021/bp010008s.
Askari M, Alarie JP, Moreno-Bondi M, Vo-Dinh T. Application of an antibody biochip for p53 detection and cancer diagnosis. Biotechnology progress. 2001 May;17(3):543–552.
Journal cover image

Published In

Biotechnology progress

DOI

EISSN

1520-6033

ISSN

8756-7938

Publication Date

May 2001

Volume

17

Issue

3

Start / End Page

543 / 552

Related Subject Headings

  • Tumor Suppressor Protein p53
  • Sensitivity and Specificity
  • Neoplasms
  • Lasers
  • Immunoassay
  • Humans
  • Biotechnology
  • Biosensing Techniques
  • Antigen-Antibody Complex
  • Antibodies, Monoclonal