Fast multipole method for scattering from 3-D pec targets situated in a half-space environment
The fast multipole method (FMM) is extended to the problem of an arbitrary, three-dimensional perfect conductor situated above or below a lossy, dielectric half space. The interactions between basis and testing functions within an FMM cluster, and for nearby clusters, are handled via the rigorous dyadic Green's function, with the latter evaluated efficiently using the complex-image technique. Intercluster interactions are modeled as in the free-space FMM, with the dyadic Green's function approximated via real images and equivalent reflection coefficients; these approximations have proven to be highly accurate. Example results are presented for a large trihedral fiducial target, in free space and above a lossy, dispersive half space, with comparisons presented between the FMM and a rigorous method-of-moments (MoM) solution.
Duke Scholars
Published In
DOI
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
Citation
Published In
DOI
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics