Skip to main content

Lack of effect of mossy fiber-released zinc on granule cell GABA(A) receptors in the pilocarpine model of epilepsy.

Publication ,  Journal Article
Molnár, P; Nadler, JV
Published in: J Neurophysiol
May 2001

The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.

Duke Scholars

Published In

J Neurophysiol

DOI

ISSN

0022-3077

Publication Date

May 2001

Volume

85

Issue

5

Start / End Page

1932 / 1940

Location

United States

Related Subject Headings

  • gamma-Aminobutyric Acid
  • Zinc
  • Status Epilepticus
  • Receptors, N-Methyl-D-Aspartate
  • Receptors, GABA-A
  • Rats, Sprague-Dawley
  • Rats
  • Pilocarpine
  • Patch-Clamp Techniques
  • Neurons
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Molnár, P., & Nadler, J. V. (2001). Lack of effect of mossy fiber-released zinc on granule cell GABA(A) receptors in the pilocarpine model of epilepsy. J Neurophysiol, 85(5), 1932–1940. https://doi.org/10.1152/jn.2001.85.5.1932
Molnár, P., and J. V. Nadler. “Lack of effect of mossy fiber-released zinc on granule cell GABA(A) receptors in the pilocarpine model of epilepsy.J Neurophysiol 85, no. 5 (May 2001): 1932–40. https://doi.org/10.1152/jn.2001.85.5.1932.
Molnár, P., and J. V. Nadler. “Lack of effect of mossy fiber-released zinc on granule cell GABA(A) receptors in the pilocarpine model of epilepsy.J Neurophysiol, vol. 85, no. 5, May 2001, pp. 1932–40. Pubmed, doi:10.1152/jn.2001.85.5.1932.

Published In

J Neurophysiol

DOI

ISSN

0022-3077

Publication Date

May 2001

Volume

85

Issue

5

Start / End Page

1932 / 1940

Location

United States

Related Subject Headings

  • gamma-Aminobutyric Acid
  • Zinc
  • Status Epilepticus
  • Receptors, N-Methyl-D-Aspartate
  • Receptors, GABA-A
  • Rats, Sprague-Dawley
  • Rats
  • Pilocarpine
  • Patch-Clamp Techniques
  • Neurons