Skip to main content
Journal cover image

Constrained customization of non-coplanar beam orientations in radiotherapy of brain tumours.

Publication ,  Journal Article
Rowbottom, CG; Oldham, M; Webb, S
Published in: Phys Med Biol
February 1999

A methodology for the constrained customization of non-coplanar beam orientations in radiotherapy treatment planning has been developed and tested on a cohort of five patients with tumours of the brain. The methodology employed a combination of single and multibeam cost functions to produce customized beam orientations. The single-beam cost function was used to reduce the search space for the multibeam cost function, which was minimized using a fast simulated annealing algorithm. The scheme aims to produce well-spaced, customized beam orientations for each patient that produce low dose to organs at risk (OARs). The customized plans were compared with standard plans containing the number and orientation of beams chosen by a human planner. The beam orientation constraint-customized plans employed the same number of treatment beams as the standard plan but with beam orientations chosen by the constrained-customization scheme. Improvements from beam orientation constraint-customization were studied in isolation by customizing the beam weights of both plans using a dose-based downhill simplex algorithm. The results show that beam orientation constraint-customization reduced the maximum dose to the orbits by an average of 18.8 (+/-3.8, ISD)% and to the optic nerves by 11.4 (+/-4.8, ISD)% with no degradation of the planning target volume (PTV) dose distribution. The mean doses, averaged over the patient cohort, were reduced by 4.2 (+/-1.1, ISD)% and 12.4 (+/-3.1, ISD)% for the orbits and optic nerves respectively. In conclusion, the beam orientation constraint-customization can reduce the dose to OARs, for few-beam treatment plans, when compared with standard treatment plans developed by a human planner.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Phys Med Biol

DOI

ISSN

0031-9155

Publication Date

February 1999

Volume

44

Issue

2

Start / End Page

383 / 399

Location

England

Related Subject Headings

  • Radiotherapy, Conformal
  • Radiotherapy Planning, Computer-Assisted
  • Pituitary Neoplasms
  • Nuclear Medicine & Medical Imaging
  • Models, Theoretical
  • Meningioma
  • Meningeal Neoplasms
  • Humans
  • Glioblastoma
  • Cohort Studies
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rowbottom, C. G., Oldham, M., & Webb, S. (1999). Constrained customization of non-coplanar beam orientations in radiotherapy of brain tumours. Phys Med Biol, 44(2), 383–399. https://doi.org/10.1088/0031-9155/44/2/007
Rowbottom, C. G., M. Oldham, and S. Webb. “Constrained customization of non-coplanar beam orientations in radiotherapy of brain tumours.Phys Med Biol 44, no. 2 (February 1999): 383–99. https://doi.org/10.1088/0031-9155/44/2/007.
Rowbottom CG, Oldham M, Webb S. Constrained customization of non-coplanar beam orientations in radiotherapy of brain tumours. Phys Med Biol. 1999 Feb;44(2):383–99.
Rowbottom, C. G., et al. “Constrained customization of non-coplanar beam orientations in radiotherapy of brain tumours.Phys Med Biol, vol. 44, no. 2, Feb. 1999, pp. 383–99. Pubmed, doi:10.1088/0031-9155/44/2/007.
Rowbottom CG, Oldham M, Webb S. Constrained customization of non-coplanar beam orientations in radiotherapy of brain tumours. Phys Med Biol. 1999 Feb;44(2):383–399.
Journal cover image

Published In

Phys Med Biol

DOI

ISSN

0031-9155

Publication Date

February 1999

Volume

44

Issue

2

Start / End Page

383 / 399

Location

England

Related Subject Headings

  • Radiotherapy, Conformal
  • Radiotherapy Planning, Computer-Assisted
  • Pituitary Neoplasms
  • Nuclear Medicine & Medical Imaging
  • Models, Theoretical
  • Meningioma
  • Meningeal Neoplasms
  • Humans
  • Glioblastoma
  • Cohort Studies