Skip to main content

Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates.

Publication ,  Journal Article
Ghio, AJ; Kennedy, TP; Whorton, AR; Crumbliss, AL; Hatch, GE; Hoidal, JR
Published in: The American journal of physiology
November 1992

Inhalation of silicates induces a variety of lung diseases in humans. The molecular mechanism(s) by which these dusts cause disease is not known. Because several naturally occurring mineral oxides have large amounts of transition metal ions on their surfaces, we tested the hypothesis that surface complexation of iron may be an important determinant of their ability to induce disease. Silica, crocidolite, kaolinite, and talc complexed considerable concentrations of Fe3+ onto their surfaces from both in vitro and in vivo sources. The potential biological importance of iron complexation was assessed by examining the relationship between surface [Fe3+] and the ability of silicates to mediate oxidative degradation of deoxyribose in vitro, induce a respiratory burst and elicit leukotriene B4 (LTB4) release by alveolar macrophages (AM) in vitro, and cause acute alveolitis after intratracheal insufflation. For these studies, three varieties of silicate dusts were used: iron-loaded, wetted (unmodified), and deferoxamine-treated to remove Fe3+. The ability of silicates to catalyze oxidant generation in an ascorbate/H2O2 system in vitro, to trigger respiratory burst activity and LTB4 release by AM, and to induce acute lung inflammation in the rat all increased with surface complexed Fe3+. The results of these studies suggest that surface complexation of iron may be an important determinant in the pathogenesis of disease after silicate exposure.

Duke Scholars

Published In

The American journal of physiology

DOI

EISSN

2163-5773

ISSN

0002-9513

Publication Date

November 1992

Volume

263

Issue

5 Pt 1

Start / End Page

L511 / L518

Related Subject Headings

  • Surface Properties
  • Silicon Dioxide
  • Silicic Acid
  • Reactive Oxygen Species
  • Rats, Sprague-Dawley
  • Rats
  • Pneumonia
  • Oxygen Consumption
  • Minerals
  • Male
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Ghio, A. J., Kennedy, T. P., Whorton, A. R., Crumbliss, A. L., Hatch, G. E., & Hoidal, J. R. (1992). Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates. The American Journal of Physiology, 263(5 Pt 1), L511–L518. https://doi.org/10.1152/ajplung.1992.263.5.l511
Ghio, A. J., T. P. Kennedy, A. R. Whorton, A. L. Crumbliss, G. E. Hatch, and J. R. Hoidal. “Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates.The American Journal of Physiology 263, no. 5 Pt 1 (November 1992): L511–18. https://doi.org/10.1152/ajplung.1992.263.5.l511.
Ghio AJ, Kennedy TP, Whorton AR, Crumbliss AL, Hatch GE, Hoidal JR. Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates. The American journal of physiology. 1992 Nov;263(5 Pt 1):L511–8.
Ghio, A. J., et al. “Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates.The American Journal of Physiology, vol. 263, no. 5 Pt 1, Nov. 1992, pp. L511–18. Epmc, doi:10.1152/ajplung.1992.263.5.l511.
Ghio AJ, Kennedy TP, Whorton AR, Crumbliss AL, Hatch GE, Hoidal JR. Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates. The American journal of physiology. 1992 Nov;263(5 Pt 1):L511–L518.

Published In

The American journal of physiology

DOI

EISSN

2163-5773

ISSN

0002-9513

Publication Date

November 1992

Volume

263

Issue

5 Pt 1

Start / End Page

L511 / L518

Related Subject Headings

  • Surface Properties
  • Silicon Dioxide
  • Silicic Acid
  • Reactive Oxygen Species
  • Rats, Sprague-Dawley
  • Rats
  • Pneumonia
  • Oxygen Consumption
  • Minerals
  • Male