Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy
The authors present a spectroscopic analysis of a planar split-ring-resonator (SRR) medium at terahertz frequencies, quantitatively characterizing the associated magnetic resonance. Experimental quantification at terahertz and infrared frequencies of metamaterial optical constants has been primarily absent, largely due to the difficulty of collecting phase information at these frequencies. In this letter, the authors circumvent the need for phase information in the characterization by acquiring the power transmitted through the metamaterial at a series of oblique angles, and relating the multiangle data set to the effective permittivity and permeability through the Fresnel expressions. The resulting measurements reveal the expected resonant permeability of the SRR which exhibits a range of negative values, the minimum value being μ=-0.8 at 1.1 THz. © 2007 American Institute of Physics.
Duke Scholars
Published In
DOI
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences