A method for measuring the presampled MTF of digital radiographic systems using an edge test device.
The modulation transfer function (MTF) of radiographic systems is frequently evaluated by measuring the system's line spread function (LSF) using narrow slits. The slit method requires precise fabrication and alignment of a slit and high radiation exposure. An alternative method for determining the MTF uses a sharp, attenuating edge device. We have constructed an edge device from a 250-microm-thick lead foil laminated between two thin slabs of acrylic. The device is placed near the detector and aligned with the aid of a laser beam and a holder such that a polished edge is parallel to the x-ray beam. A digital image of the edge is processed to obtain the presampled MTF. The image processing includes automated determination of the edge angle, reprojection, sub-binning, smoothing of the edge spread function (ESF), and spectral estimation. This edge method has been compared to the slit method using measurements on standard and high-resolution imaging plates of a digital storage phosphor (DSP) radiography system. The experimental results for both methods agree with a mean MTF difference of 0.008. The edge method provides a convenient measurement of the presampled MTF for digital radiographic systems with good response at low frequencies.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- X-Ray Intensifying Screens
- Reproducibility of Results
- Radiographic Image Enhancement
- Nuclear Medicine & Medical Imaging
- Lasers
- Image Processing, Computer-Assisted
- Computer Simulation
- 5105 Medical and biological physics
- 4003 Biomedical engineering
- 1112 Oncology and Carcinogenesis
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- X-Ray Intensifying Screens
- Reproducibility of Results
- Radiographic Image Enhancement
- Nuclear Medicine & Medical Imaging
- Lasers
- Image Processing, Computer-Assisted
- Computer Simulation
- 5105 Medical and biological physics
- 4003 Biomedical engineering
- 1112 Oncology and Carcinogenesis