Skip to main content

Time-resolved spectroscopy of silver nanocubes: Observation and assignment of coherently excited vibrational modes

Publication ,  Journal Article
Petrova, H; Lin, CH; De Liejer, S; Hu, M; McLellan, JM; Siekkinen, AR; Wiley, BJ; Marquez, M; Xia, Y; Sader, JE; Hartland, GV
Published in: Journal of Chemical Physics
March 14, 2007

The response of single crystal, cubic silver particles to ultrafast laser-induced heating has been examined experimentally and theoretically. The transient absorption traces display clear modulations due to coherently excited vibrational modes. Nanocube samples with edge lengths smaller than 50 nm show a single modulation, whereas samples larger than 50 nm show two vibrational modes. The results are compared to finite element calculations, where the cubes are modeled as having cubic crystal symmetry with the principal axes parallel to the sides of the particle. The action of the laser pulse is treated in two ways, first, as creating a uniform initial strain. In this case the predominant mode excited is the breathing mode. The period of this mode is in reasonable agreement with the vibrational periods measured for the smaller cubes and with the higher frequency modulation observed for the larger cubes. A nonuniform initial strain is also considered, which could arise from nonuniform heating for particles larger than the optical skin depth of the metal. In this case the predominant mode excited is a nontotally symmetric mode. The calculated periods from this analysis are in reasonable agreement with the lower frequency modulations observed for the larger samples. The results from this study show that, to within the accuracy of these measurements, the elastic constants of cubic silver nanoparticles are the same as bulk silver. © 2007 American Institute of Physics.

Duke Scholars

Published In

Journal of Chemical Physics

DOI

ISSN

0021-9606

Publication Date

March 14, 2007

Volume

126

Issue

9

Related Subject Headings

  • Chemical Physics
  • 51 Physical sciences
  • 40 Engineering
  • 34 Chemical sciences
  • 09 Engineering
  • 03 Chemical Sciences
  • 02 Physical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Petrova, H., Lin, C. H., De Liejer, S., Hu, M., McLellan, J. M., Siekkinen, A. R., … Hartland, G. V. (2007). Time-resolved spectroscopy of silver nanocubes: Observation and assignment of coherently excited vibrational modes. Journal of Chemical Physics, 126(9). https://doi.org/10.1063/1.2672907
Petrova, H., C. H. Lin, S. De Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, et al. “Time-resolved spectroscopy of silver nanocubes: Observation and assignment of coherently excited vibrational modes.” Journal of Chemical Physics 126, no. 9 (March 14, 2007). https://doi.org/10.1063/1.2672907.
Petrova H, Lin CH, De Liejer S, Hu M, McLellan JM, Siekkinen AR, et al. Time-resolved spectroscopy of silver nanocubes: Observation and assignment of coherently excited vibrational modes. Journal of Chemical Physics. 2007 Mar 14;126(9).
Petrova, H., et al. “Time-resolved spectroscopy of silver nanocubes: Observation and assignment of coherently excited vibrational modes.” Journal of Chemical Physics, vol. 126, no. 9, Mar. 2007. Scopus, doi:10.1063/1.2672907.
Petrova H, Lin CH, De Liejer S, Hu M, McLellan JM, Siekkinen AR, Wiley BJ, Marquez M, Xia Y, Sader JE, Hartland GV. Time-resolved spectroscopy of silver nanocubes: Observation and assignment of coherently excited vibrational modes. Journal of Chemical Physics. 2007 Mar 14;126(9).

Published In

Journal of Chemical Physics

DOI

ISSN

0021-9606

Publication Date

March 14, 2007

Volume

126

Issue

9

Related Subject Headings

  • Chemical Physics
  • 51 Physical sciences
  • 40 Engineering
  • 34 Chemical sciences
  • 09 Engineering
  • 03 Chemical Sciences
  • 02 Physical Sciences