The matrix stick-breaking process: Flexible Bayes meta-analysis
In analyzing data from multiple related studies, it often is of interest to borrow information across studies and to cluster similar studies. Although parametric hierarchical models are commonly used, of concern is sensitivity to the form chosen for the random-effects distribution. A Dirichlet process (DP) prior can allow the distribution to be unknown, while clustering studies; however, the DP does not allow local clustering of studies with respect to a subset of the coefficients without making independence assumptions. Motivated by this problem, we propose a matrix stick-breaking process (MSBP) as a prior for a matrix of random probability measures. Properties of the MSBP are considered, and methods are developed for posterior computation using Markov chain Monte Carlo. Using the MSBP as a prior for a matrix of study-specific regression coefficients, we demonstrate advantages over parametric modeling in simulated examples. The methods are further illustrated using a multinational uterotrophic bioassay study.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics