Skip to main content

Accelerated thymic maturation and autoreactive T cells in bronchopulmonary dysplasia.

Publication ,  Journal Article
Rosen, D; Lee, J-H; Cuttitta, F; Rafiqi, F; Degan, S; Sunday, ME
Published in: Am J Respir Crit Care Med
July 1, 2006

RATIONALE: Bronchopulmonary dysplasia (BPD), a chronic lung disease of newborns triggered by oxygen and barotrauma, is characterized by arrested alveolarization. Increased levels of bombesin-like peptides shortly after birth mediate lung injury: anti-bombesin antibody 2A11 protects against BPD in two baboon models. The role of adaptive immunity in BPD has not been explored previously. OBJECTIVES: Our goal was to test the hypothesis that thymic architecture and/or T-cell function is altered with BPD, leading to autoimmunity and immunodeficiency. METHODS: Thymic structure was analyzed by histopathology of thymic architecture and immunohistochemistry for thymic maturation markers (terminal deoxynucleotidyl transferase, proliferating cell nuclear antigen, CD4, and CD8). Thymic cortical epithelial cells (nurse cells) were studied using HLA-DR and protein gene product 9.5 as markers. Functional analysis was performed with "mixed lymphocyte reaction" of thymocyte or splenocyte responder cells with autologous lung cells as the stimulators. MEASUREMENTS AND MAIN RESULTS: 2A11 treatment attenuates thymic cortical involution in BPD animals, sustaining terminal deoxynucleotidyl transferase-positive prothymocytes and thymocyte proliferation. BPD animals have increased CD4(+) cells in thymic cortex and lung interstitium, which are reduced by 2A11. Conversely, cortical protein gene product 9.5/HLA-DR-positive thymic nurse cells are depleted in BPD animals, but are preserved by 2A11-treatment. Whereas fetal thymocytes and splenocytes respond to phythemagglutinin/ionomycin and to a lesser extent, to autologous lung, BPD thymocytes and splenocytes are phythemagglutinin/ionomycin-unresponsive, and yet react strongly to autologous lung. The 2A11 normalizes these responses. CONCLUSIONS: These observations suggest that bombesin-like peptides mediate premature thymic maturation and thymic nurse-cell depletion, leading to autoreactive T cells that could contribute to lung injury.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Am J Respir Crit Care Med

DOI

EISSN

1535-4970

Publication Date

July 1, 2006

Volume

174

Issue

1

Start / End Page

75 / 83

Location

United States

Related Subject Headings

  • Thymus Gland
  • T-Lymphocytes
  • Respiratory System
  • Proliferating Cell Nuclear Antigen
  • Papio
  • Lymphocyte Culture Test, Mixed
  • Infant, Premature
  • Infant, Newborn
  • Humans
  • Disease Models, Animal
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rosen, D., Lee, J.-H., Cuttitta, F., Rafiqi, F., Degan, S., & Sunday, M. E. (2006). Accelerated thymic maturation and autoreactive T cells in bronchopulmonary dysplasia. Am J Respir Crit Care Med, 174(1), 75–83. https://doi.org/10.1164/rccm.200511-1784OC
Rosen, Dennis, Jong-Hwan Lee, Frank Cuttitta, Fatema Rafiqi, Simone Degan, and Mary E. Sunday. “Accelerated thymic maturation and autoreactive T cells in bronchopulmonary dysplasia.Am J Respir Crit Care Med 174, no. 1 (July 1, 2006): 75–83. https://doi.org/10.1164/rccm.200511-1784OC.
Rosen D, Lee J-H, Cuttitta F, Rafiqi F, Degan S, Sunday ME. Accelerated thymic maturation and autoreactive T cells in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2006 Jul 1;174(1):75–83.
Rosen, Dennis, et al. “Accelerated thymic maturation and autoreactive T cells in bronchopulmonary dysplasia.Am J Respir Crit Care Med, vol. 174, no. 1, July 2006, pp. 75–83. Pubmed, doi:10.1164/rccm.200511-1784OC.
Rosen D, Lee J-H, Cuttitta F, Rafiqi F, Degan S, Sunday ME. Accelerated thymic maturation and autoreactive T cells in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2006 Jul 1;174(1):75–83.

Published In

Am J Respir Crit Care Med

DOI

EISSN

1535-4970

Publication Date

July 1, 2006

Volume

174

Issue

1

Start / End Page

75 / 83

Location

United States

Related Subject Headings

  • Thymus Gland
  • T-Lymphocytes
  • Respiratory System
  • Proliferating Cell Nuclear Antigen
  • Papio
  • Lymphocyte Culture Test, Mixed
  • Infant, Premature
  • Infant, Newborn
  • Humans
  • Disease Models, Animal