Skip to main content

Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain.

Publication ,  Journal Article
Chen, W; Aoki, C; Mahadomrongkul, V; Gruber, CE; Wang, GJ; Blitzblau, R; Irwin, N; Rosenberg, PA
Published in: J Neurosci
March 15, 2002

To identify glutamate transporters expressed in forebrain neurons, we prepared a cDNA library from rat forebrain neuronal cultures, previously shown to transport glutamate with high affinity and capacity. Using this library, we cloned two forms, varying in the C terminus, of the glutamate transporter GLT1. This transporter was previously found to be localized exclusively in astrocytes in the normal mature brain. Specific antibodies against the C-terminal peptides were used to show that forebrain neurons in culture express both GLT1a and GLT1b proteins. The pharmacological properties of glutamate transport mediated by GLT1a and GLT1b expressed in COS-7 cells and in neuronal cultures were indistinguishable. Both GLT1a and GLT1b were upregulated in astrocyte cultures by exposure to dibutyryl cAMP. We next investigated the expression of GLT1b in vivo. Northern blot analysis of forebrain RNA revealed two transcripts of approximately 3 and 11 kb that became more plentiful with developmental age. Immunoblot analysis showed high levels of expression in the cortex, hippocampus, striatum, thalamus, and midbrain. Pre-embedding electron microscopic immunocytochemistry with silver-enhanced immunogold detection was used to localize GLT1b in vivo. In the rat somatosensory cortex, GLT1b was clearly expressed in neurons in presynaptic terminals and dendritic shafts, as well as in astrocytes. The presence of GLT1b in neurons may offer a partial explanation for the observed uptake of glutamate by presynaptic terminals, for the preservation of input specificity at excitatory synapses, and may play a role in the pathophysiology of excitotoxicity.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Neurosci

DOI

EISSN

1529-2401

Publication Date

March 15, 2002

Volume

22

Issue

6

Start / End Page

2142 / 2152

Location

United States

Related Subject Headings

  • Up-Regulation
  • Transfection
  • Substrate Specificity
  • Rats, Sprague-Dawley
  • Rats
  • RNA, Messenger
  • Protein Isoforms
  • Prosencephalon
  • Presynaptic Terminals
  • Neurons
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chen, W., Aoki, C., Mahadomrongkul, V., Gruber, C. E., Wang, G. J., Blitzblau, R., … Rosenberg, P. A. (2002). Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci, 22(6), 2142–2152. https://doi.org/10.1523/JNEUROSCI.22-06-02142.2002
Chen, Weizhi, Chiye Aoki, Veeravan Mahadomrongkul, Christian E. Gruber, Guang Jian Wang, Rachel Blitzblau, Nina Irwin, and Paul A. Rosenberg. “Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain.J Neurosci 22, no. 6 (March 15, 2002): 2142–52. https://doi.org/10.1523/JNEUROSCI.22-06-02142.2002.
Chen W, Aoki C, Mahadomrongkul V, Gruber CE, Wang GJ, Blitzblau R, et al. Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci. 2002 Mar 15;22(6):2142–52.
Chen, Weizhi, et al. “Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain.J Neurosci, vol. 22, no. 6, Mar. 2002, pp. 2142–52. Pubmed, doi:10.1523/JNEUROSCI.22-06-02142.2002.
Chen W, Aoki C, Mahadomrongkul V, Gruber CE, Wang GJ, Blitzblau R, Irwin N, Rosenberg PA. Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci. 2002 Mar 15;22(6):2142–2152.

Published In

J Neurosci

DOI

EISSN

1529-2401

Publication Date

March 15, 2002

Volume

22

Issue

6

Start / End Page

2142 / 2152

Location

United States

Related Subject Headings

  • Up-Regulation
  • Transfection
  • Substrate Specificity
  • Rats, Sprague-Dawley
  • Rats
  • RNA, Messenger
  • Protein Isoforms
  • Prosencephalon
  • Presynaptic Terminals
  • Neurons