Skip to main content
Journal cover image

Soil carbon and nitrogen dynamics in southern African savannas: the effect of vegetation-induced patch-scale heterogeneities and large scale rainfall gradients

Publication ,  Journal Article
Wang, L; D'Odorico, P; Manzoni, S; Porporato, A; Macko, S
Published in: CLIMATIC CHANGE
May 2009

Savanna ecosystems are mixed plant communities in which trees and grasses co-exist thereby providing a heterogeneous landscape with a mosaic of tree-dominated and grass-dominated soil patches. Despite the important role that nutrient availability plays in these systems, detailed knowledge of differences in carbon and nitrogen cycling in soil patches predominantly covered by tree canopies or by grasses is still lacking. In this study, a process-based model was used to investigate the carbon and nitrogen dynamics in soil plots located in grass-dominated and tree/shrub-dominated soil patches along the Kalahari Transect (KT). The KT in southern Africa traverses a dramatic aridity gradient, across relatively homogenous soils, providing an ideal setting for global change studies. Here we show that there are distinctly different dynamics for soil moisture, decomposition and nitrogen mineralization between soil plots located under tree canopies and in open canopy areas, especially at the dryer end of the KT. Such differences diminished when approaching the wetter end of this transect. This study shows that in savanna ecosystems, water availability determines the patterns and rates of nutrient cycling at large scales, while at the local scales, vegetation patchiness plays an important role in nutrient cycling. Savannas are relatively stable ecosystems, resilient to small rainfall modifications, although irreversible changes may occur with stronger shifts in climate conditions.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

CLIMATIC CHANGE

DOI

ISSN

0165-0009

Publication Date

May 2009

Volume

94

Issue

1-2

Start / End Page

63 / 76

Related Subject Headings

  • Meteorology & Atmospheric Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wang, L., D’Odorico, P., Manzoni, S., Porporato, A., & Macko, S. (2009). Soil carbon and nitrogen dynamics in southern African savannas: the effect of vegetation-induced patch-scale heterogeneities and large scale rainfall gradients. CLIMATIC CHANGE, 94(1–2), 63–76. https://doi.org/10.1007/s10584-009-9548-8
Wang, Lixin, Paolo D’Odorico, Stefano Manzoni, Amilcare Porporato, and Stephen Macko. “Soil carbon and nitrogen dynamics in southern African savannas: the effect of vegetation-induced patch-scale heterogeneities and large scale rainfall gradients.” CLIMATIC CHANGE 94, no. 1–2 (May 2009): 63–76. https://doi.org/10.1007/s10584-009-9548-8.
Wang, Lixin, et al. “Soil carbon and nitrogen dynamics in southern African savannas: the effect of vegetation-induced patch-scale heterogeneities and large scale rainfall gradients.” CLIMATIC CHANGE, vol. 94, no. 1–2, May 2009, pp. 63–76. Manual, doi:10.1007/s10584-009-9548-8.
Journal cover image

Published In

CLIMATIC CHANGE

DOI

ISSN

0165-0009

Publication Date

May 2009

Volume

94

Issue

1-2

Start / End Page

63 / 76

Related Subject Headings

  • Meteorology & Atmospheric Sciences