Skip to main content
Journal cover image

Coordination of leaf and stem water transport properties in tropical forest trees.

Publication ,  Journal Article
Meinzer, FC; Woodruff, DR; Domec, J-C; Goldstein, G; Campanello, PI; Gatti, MG; Villalobos-Vega, R
Published in: Oecologia
May 2008

Stomatal regulation of transpiration constrains leaf water potential (Psi(L)) within species-specific ranges that presumably avoid excessive tension and embolism in the stem xylem upstream. However, the hydraulic resistance of leaves can be highly variable over short time scales, uncoupling tension in the xylem of leaves from that in the stems to which they are attached. We evaluated a suite of leaf and stem functional traits governing water relations in individuals of 11 lowland tropical forest tree species to determine the manner in which the traits were coordinated with stem xylem vulnerability to embolism. Stomatal regulation of Psi(L) was associated with minimum values of water potential in branches (Psi(br)) whose functional significance was similar across species. Minimum values of Psi(br) coincided with the bulk sapwood tissue osmotic potential at zero turgor derived from pressure-volume curves and with the transition from a linear to exponential increase in xylem embolism with increasing sapwood water deficits. Branch xylem pressure corresponding to 50% loss of hydraulic conductivity (P (50)) declined linearly with daily minimum Psi(br) in a manner that caused the difference between Psi(br) and P (50) to increase from 0.4 MPa in the species with the least negative Psi(br) to 1.2 MPa in the species with the most negative Psi(br). Both branch P (50) and minimum Psi(br) increased linearly with sapwood capacitance (C) such that the difference between Psi(br) and P (50), an estimate of the safety margin for avoiding runaway embolism, decreased with increasing sapwood C. The results implied a trade-off between maximizing water transport and minimizing the risk of xylem embolism, suggesting a prominent role for the buffering effect of C in preserving the integrity of xylem water transport. At the whole-tree level, discharge and recharge of internal C appeared to generate variations in apparent leaf-specific conductance to which stomata respond dynamically.

Duke Scholars

Published In

Oecologia

DOI

EISSN

1432-1939

ISSN

0029-8549

Publication Date

May 2008

Volume

156

Issue

1

Start / End Page

31 / 41

Related Subject Headings

  • Xylem
  • Water
  • Tropical Climate
  • Trees
  • Plant Transpiration
  • Plant Stomata
  • Plant Stems
  • Panama
  • Magnoliopsida
  • Ecology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Meinzer, F. C., Woodruff, D. R., Domec, J.-C., Goldstein, G., Campanello, P. I., Gatti, M. G., & Villalobos-Vega, R. (2008). Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia, 156(1), 31–41. https://doi.org/10.1007/s00442-008-0974-5
Meinzer, Frederick C., David R. Woodruff, Jean-Christophe Domec, Guillermo Goldstein, Paula I. Campanello, M Genoveva Gatti, and Randol Villalobos-Vega. “Coordination of leaf and stem water transport properties in tropical forest trees.Oecologia 156, no. 1 (May 2008): 31–41. https://doi.org/10.1007/s00442-008-0974-5.
Meinzer FC, Woodruff DR, Domec J-C, Goldstein G, Campanello PI, Gatti MG, et al. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia. 2008 May;156(1):31–41.
Meinzer, Frederick C., et al. “Coordination of leaf and stem water transport properties in tropical forest trees.Oecologia, vol. 156, no. 1, May 2008, pp. 31–41. Epmc, doi:10.1007/s00442-008-0974-5.
Meinzer FC, Woodruff DR, Domec J-C, Goldstein G, Campanello PI, Gatti MG, Villalobos-Vega R. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia. 2008 May;156(1):31–41.
Journal cover image

Published In

Oecologia

DOI

EISSN

1432-1939

ISSN

0029-8549

Publication Date

May 2008

Volume

156

Issue

1

Start / End Page

31 / 41

Related Subject Headings

  • Xylem
  • Water
  • Tropical Climate
  • Trees
  • Plant Transpiration
  • Plant Stomata
  • Plant Stems
  • Panama
  • Magnoliopsida
  • Ecology