Skip to main content
Journal cover image

The role of protein kinase C in modulation of aqueous humor outflow facility.

Publication ,  Journal Article
Khurana, RN; Deng, P-F; Epstein, DL; Vasantha Rao, P
Published in: Exp Eye Res
January 2003

The elevated intraocular pressure that is commonly associated with glaucoma is believed to arise due to impairment of trabecular meshwork (TM) function. Although the TM and Schlemm's canal (SC) comprise the major route for aqueous humor outflow, little is known about the potential signaling mechanisms involved in the regulation of aqueous outflow. Based on knowledge regarding the role of protein kinase C (PKC) in vascular biology, we sought to understand the contribution of the PKC pathway towards outflow function by studying the modulation of contractile and morphological characteristics of TM and SC cells. We investigated the involvement of PKC in regulation of myosin light chain (MLC) phosphorylation, formation of actin stress fibers and integrin-ECM adhesions (focal adhesions) in human TM and SC cells and correlated these changes with aqueous outflow facility measured in an enucleated porcine whole eye perfusion model. Expression and distribution of PKC isoforms (alpha and epsilon ) in TM and SC cells and tissues was confirmed by Western blot and immunohistochemical analysis, respectively. Both, pharmacological activators (phorbol-12-myristate 13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and inhibitors (staurosporine and GF109203X) of PKC were found to induce changes in cell shape (retraction and rounding up) and cytoskeletal organization in human TM and SC cells. While PMA and PDBu produced an increase in formation of actin stress fibers and focal adhesions and in MLC phosphorylation, PKC inhibitors were observed to induce contrasting effects in these cells. Intriguingly, both PDBU and GF109203X caused increases in aqueous outflow facility in the perfusion model. The PKC inhibitor (GF109203X) increased outflow by 46% while the PKC activator (PDBu) only increased outflow by 27%. These results suggest that PKC might play an important role in modulation of aqueous outflow facility by regulating MLC phosphorylation and thereby, the morphological and cytoskeletal characteristics of TM and SC cells.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Exp Eye Res

DOI

ISSN

0014-4835

Publication Date

January 2003

Volume

76

Issue

1

Start / End Page

39 / 47

Location

England

Related Subject Headings

  • Trabecular Meshwork
  • Swine
  • Sclera
  • Protein Kinase C
  • Phosphorylation
  • Organ Culture Techniques
  • Ophthalmology & Optometry
  • Myosin Light Chains
  • Maleimides
  • Indoles
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Khurana, R. N., Deng, P.-F., Epstein, D. L., & Vasantha Rao, P. (2003). The role of protein kinase C in modulation of aqueous humor outflow facility. Exp Eye Res, 76(1), 39–47. https://doi.org/10.1016/s0014-4835(02)00255-5
Khurana, Rahul N., Pei-Feng Deng, David L. Epstein, and P. Vasantha Rao. “The role of protein kinase C in modulation of aqueous humor outflow facility.Exp Eye Res 76, no. 1 (January 2003): 39–47. https://doi.org/10.1016/s0014-4835(02)00255-5.
Khurana RN, Deng P-F, Epstein DL, Vasantha Rao P. The role of protein kinase C in modulation of aqueous humor outflow facility. Exp Eye Res. 2003 Jan;76(1):39–47.
Khurana, Rahul N., et al. “The role of protein kinase C in modulation of aqueous humor outflow facility.Exp Eye Res, vol. 76, no. 1, Jan. 2003, pp. 39–47. Pubmed, doi:10.1016/s0014-4835(02)00255-5.
Khurana RN, Deng P-F, Epstein DL, Vasantha Rao P. The role of protein kinase C in modulation of aqueous humor outflow facility. Exp Eye Res. 2003 Jan;76(1):39–47.
Journal cover image

Published In

Exp Eye Res

DOI

ISSN

0014-4835

Publication Date

January 2003

Volume

76

Issue

1

Start / End Page

39 / 47

Location

England

Related Subject Headings

  • Trabecular Meshwork
  • Swine
  • Sclera
  • Protein Kinase C
  • Phosphorylation
  • Organ Culture Techniques
  • Ophthalmology & Optometry
  • Myosin Light Chains
  • Maleimides
  • Indoles