Skip to main content
Journal cover image

The synthetic cannabinoid WIN 55212-2 differentially modulates thigmotaxis but not spatial learning in adolescent and adult animals.

Publication ,  Journal Article
Acheson, SK; Moore, NLT; Kuhn, CM; Wilson, WA; Swartzwelder, HS
Published in: Neurosci Lett
January 10, 2011

Unlike Δ(9)-THC, the synthetic compound WIN 55212-2 (WIN) is a full agonist of endogenous cannabinoid receptors. Previous work has shown Δ(9)-THC to affect adolescent and adult animals differently on numerous behavioral measures of spatial memory, anxiety, and locomotor activity. However, far less is known about the developmental and neurobehavioral effects of WIN. To address this, we assessed the effect of WIN (1mg/kg) on spatial learning in adolescent and adult rats using the Morris water maze. While all animals demonstrated decreased swim distance across days, WIN affected adolescents and adults differently. It improved performance in adolescents and resulted in a nearly significant performance decrement in adults. However, these effects were significantly related to thigmotaxis, which declined across days in the water maze testing protocol. WIN reduced thigmotaxis on days 1 and 2 (but not days 3-5) only in adolescents. The effect of age, treatment, and the age×treatment interaction was eliminated after controlling for thigmotaxis. These results indicate that WIN affects thigmotaxis rather than spatial reference memory. More importantly, these findings indicate a dissociation between the developmental effects of THC and the synthetic CB1 receptor agonist, WIN 55212-2. We suggest that the role of thigmotaxis be carefully evaluated in future neurodevelopmental studies of spatial learning, especially those investigating the endocannabinoid system.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Neurosci Lett

DOI

EISSN

1872-7972

Publication Date

January 10, 2011

Volume

487

Issue

3

Start / End Page

411 / 414

Location

Ireland

Related Subject Headings

  • Rats, Sprague-Dawley
  • Rats
  • Naphthalenes
  • Motor Activity
  • Morpholines
  • Maze Learning
  • Male
  • Cannabinoids
  • Calcium Channel Blockers
  • Brain
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Acheson, S. K., Moore, N. L. T., Kuhn, C. M., Wilson, W. A., & Swartzwelder, H. S. (2011). The synthetic cannabinoid WIN 55212-2 differentially modulates thigmotaxis but not spatial learning in adolescent and adult animals. Neurosci Lett, 487(3), 411–414. https://doi.org/10.1016/j.neulet.2010.10.067
Acheson, Shawn K., Nicole L. T. Moore, Cynthia M. Kuhn, Wilkie A. Wilson, and H Scott Swartzwelder. “The synthetic cannabinoid WIN 55212-2 differentially modulates thigmotaxis but not spatial learning in adolescent and adult animals.Neurosci Lett 487, no. 3 (January 10, 2011): 411–14. https://doi.org/10.1016/j.neulet.2010.10.067.
Acheson SK, Moore NLT, Kuhn CM, Wilson WA, Swartzwelder HS. The synthetic cannabinoid WIN 55212-2 differentially modulates thigmotaxis but not spatial learning in adolescent and adult animals. Neurosci Lett. 2011 Jan 10;487(3):411–4.
Acheson, Shawn K., et al. “The synthetic cannabinoid WIN 55212-2 differentially modulates thigmotaxis but not spatial learning in adolescent and adult animals.Neurosci Lett, vol. 487, no. 3, Jan. 2011, pp. 411–14. Pubmed, doi:10.1016/j.neulet.2010.10.067.
Acheson SK, Moore NLT, Kuhn CM, Wilson WA, Swartzwelder HS. The synthetic cannabinoid WIN 55212-2 differentially modulates thigmotaxis but not spatial learning in adolescent and adult animals. Neurosci Lett. 2011 Jan 10;487(3):411–414.
Journal cover image

Published In

Neurosci Lett

DOI

EISSN

1872-7972

Publication Date

January 10, 2011

Volume

487

Issue

3

Start / End Page

411 / 414

Location

Ireland

Related Subject Headings

  • Rats, Sprague-Dawley
  • Rats
  • Naphthalenes
  • Motor Activity
  • Morpholines
  • Maze Learning
  • Male
  • Cannabinoids
  • Calcium Channel Blockers
  • Brain