Skip to main content
Journal cover image

Evaluation of two objective methods to optimize kVp and personnel exposure using a digital indirect flat panel detector and simulated veterinary patients.

Publication ,  Journal Article
Copple, C; Robertson, ID; Thrall, DE; Samei, E
Published in: Vet Radiol Ultrasound
2013

It is important to optimize digital radiographic technique settings for small animal imaging in order to maximize image quality while minimizing radiation exposure to personnel. The purpose of this study was to evaluate two objective methods for determining optimal kVp values for an indirect flat panel digital detector. One method considered both image quality and personnel exposure as endpoints and one considered only image quality. Phantoms simulated veterinary patients of varying thicknesses with lesions of varying sizes. Phantoms were exposed to a range of kVp values (60, 81, 100, and 121), using different mAs settings for each phantom. Additionally, all phantoms were exposed to a standard test exposure of 100 kVp/2.5 mAs. Scattered radiation was recorded and used as a measure of personnel exposure. When personnel exposure was considered, a figure of merit was calculated as an endpoint of optimization. The optimal kVp value for each phantom was determined based on the highest signal difference-to-noise ratio with or without inclusion of the figure of merit. When personnel exposure was not considered, increasing kVp resulted in higher signal difference-to-noise ratios and personnel exposure increased when both patient thickness and kVp increased. Findings indicated that a single standard technique of 100 kVp/2.5 mAs was only optimal for most medium-sized patients. Images of thinner patients should be made with a lower kVp. Very large patients require a higher kVp than 100 regardless of the optimization method used. Personnel exposure from optimized techniques was low and not expected to exceed annual occupational dose limits.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Vet Radiol Ultrasound

DOI

ISSN

1058-8183

Publication Date

2013

Volume

54

Issue

1

Start / End Page

9 / 16

Location

England

Related Subject Headings

  • Veterinary Sciences
  • Signal-To-Noise Ratio
  • Reference Values
  • Radiographic Image Enhancement
  • Radiation Monitoring
  • Radiation Dosage
  • Quality Control
  • Phantoms, Imaging
  • Occupational Exposure
  • Humans
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Copple, C., Robertson, I. D., Thrall, D. E., & Samei, E. (2013). Evaluation of two objective methods to optimize kVp and personnel exposure using a digital indirect flat panel detector and simulated veterinary patients. Vet Radiol Ultrasound, 54(1), 9–16. https://doi.org/10.1111/j.1740-8261.2012.01989.x
Copple, Christina, Ian D. Robertson, Donald E. Thrall, and Ehsan Samei. “Evaluation of two objective methods to optimize kVp and personnel exposure using a digital indirect flat panel detector and simulated veterinary patients.Vet Radiol Ultrasound 54, no. 1 (2013): 9–16. https://doi.org/10.1111/j.1740-8261.2012.01989.x.
Copple, Christina, et al. “Evaluation of two objective methods to optimize kVp and personnel exposure using a digital indirect flat panel detector and simulated veterinary patients.Vet Radiol Ultrasound, vol. 54, no. 1, 2013, pp. 9–16. Pubmed, doi:10.1111/j.1740-8261.2012.01989.x.
Journal cover image

Published In

Vet Radiol Ultrasound

DOI

ISSN

1058-8183

Publication Date

2013

Volume

54

Issue

1

Start / End Page

9 / 16

Location

England

Related Subject Headings

  • Veterinary Sciences
  • Signal-To-Noise Ratio
  • Reference Values
  • Radiographic Image Enhancement
  • Radiation Monitoring
  • Radiation Dosage
  • Quality Control
  • Phantoms, Imaging
  • Occupational Exposure
  • Humans