Minimal tail-biting trellises: the Golay code and more
Tail-biting trellis representations of block codes are investigated. We develop some elementary theory, and present several intriguing examples, which we hope will stimulate further developments in this field. In particular, we construct a 16-state 12-section structurally invariant tail-biting trellis for the (24, 12, 8) binary Golay code. This tail-biting trellis representation is minimal: it simultaneously minimizes all conceivable measures of state complexity. Moreover, it compares favorably with the minimal conventional 12-section trellis for the Golay code, which has 256 states at its midpoint, or with the best quasi-cyclic representation of this code, which leads to a 64-state tail-biting trellis. Unwrapping this tail-biting trellis produces a periodically time-varying 16-state rate- 1/2 'convolutional Golay code' with d = 8, which has attractive performance/complexity properties. We furthermore show that the (6, 3, 4) quarternary hexacode has a minimal 8-state group tail-biting trellis, even though it has no such linear trellis over F 4. Minimal tail-biting trellises are also constructed for the (8, 4, 4) binary Hamming code, the (4, 2, 3) ternary tetracode, the (4, 2, 3) code over F 4, and the Z 4-linear (8, 4, 4) octacode.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4613 Theory of computation
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4613 Theory of computation
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing