Double Circulant Codes over ℤ4 and even Unimodular Lattices
Publication
, Journal Article
Calderbank, AR; Sloane, NJA
Published in: Journal of Algebraic Combinatorics
January 1, 1997
With the help of some new results about weight enumerators of self-dual codes over ℤ4 we investigate a class of double circulant codes over ℤ4, one of which leads to an extremal even unimodular 40-dimensional lattice. It is conjectured that there should be "Nine more constructions of the Leech lattice".
Duke Scholars
Published In
Journal of Algebraic Combinatorics
DOI
ISSN
0925-9899
Publication Date
January 1, 1997
Volume
6
Issue
2
Start / End Page
119 / 131
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Calderbank, A. R., & Sloane, N. J. A. (1997). Double Circulant Codes over ℤ4 and even Unimodular Lattices. Journal of Algebraic Combinatorics, 6(2), 119–131. https://doi.org/10.1023/A:1008639004036
Calderbank, A. R., and N. J. A. Sloane. “Double Circulant Codes over ℤ4 and even Unimodular Lattices.” Journal of Algebraic Combinatorics 6, no. 2 (January 1, 1997): 119–31. https://doi.org/10.1023/A:1008639004036.
Calderbank AR, Sloane NJA. Double Circulant Codes over ℤ4 and even Unimodular Lattices. Journal of Algebraic Combinatorics. 1997 Jan 1;6(2):119–31.
Calderbank, A. R., and N. J. A. Sloane. “Double Circulant Codes over ℤ4 and even Unimodular Lattices.” Journal of Algebraic Combinatorics, vol. 6, no. 2, Jan. 1997, pp. 119–31. Scopus, doi:10.1023/A:1008639004036.
Calderbank AR, Sloane NJA. Double Circulant Codes over ℤ4 and even Unimodular Lattices. Journal of Algebraic Combinatorics. 1997 Jan 1;6(2):119–131.
Published In
Journal of Algebraic Combinatorics
DOI
ISSN
0925-9899
Publication Date
January 1, 1997
Volume
6
Issue
2
Start / End Page
119 / 131
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics