Quaternary Quadratic Residue Codes and Unimodular Lattices
We construct new self-dual and isodual codes over the integers modulo 4. The binary images of these codes under the Gray map are nonlinear, but formally self-dual. The construction involves Hensel lifting of binary cyclic codes. Quaternary quadratic residue codes are obtained by Hensel lifting of the classical binary quadratic residue codes. Repeated Hensel lifting produces a universal code defined over the 2-adic integers. We investigate the connections between this universal code and the codes defined over Z4, the composition of the automorphism group, and the structure of idempotents over Z4. We also derive a square root hound on the minimum Lee weight, and explore the connections with the finite Fourier transform. Certain self-dual codes over Z4 are shown to determine even unimodular lattices, including the extended quadratic residue code of length q + 1, where q ≡ −1(mod8) is a prime power. When q = 23, the quaternary Golay code determines the Leech lattice in this way. This is perhaps the simplest construction for this remarkable lattice that is known. © 1995 IEEE
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4613 Theory of computation
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4613 Theory of computation
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing