Skip to main content
Journal cover image

Geometric invariants for quasi-symmetric designs

Publication ,  Journal Article
Calderbank, AR
Published in: Journal of Combinatorial Theory, Series A
January 1, 1988

Let p be an odd prime. We derive new necessary conditions for the existence of 2 - (ν, k, λ) designs where the block intersection sizes s1, s2, ..., sn satisfy s1 ≡ s2 ≡ ... ≡ sn (mod p). The method is to define a nondegenerate scalar product on a 2m-dimensional vector space and to construct an m-dimensional totally singular subspace. This result is a generalization to nonsymmetric designs of the Bruck-Ryser-Chowla theorem. © 1988.

Duke Scholars

Published In

Journal of Combinatorial Theory, Series A

DOI

EISSN

1096-0899

ISSN

0097-3165

Publication Date

January 1, 1988

Volume

47

Issue

1

Start / End Page

101 / 110

Related Subject Headings

  • Computation Theory & Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Calderbank, A. R. (1988). Geometric invariants for quasi-symmetric designs. Journal of Combinatorial Theory, Series A, 47(1), 101–110. https://doi.org/10.1016/0097-3165(88)90044-1
Calderbank, A. R. “Geometric invariants for quasi-symmetric designs.” Journal of Combinatorial Theory, Series A 47, no. 1 (January 1, 1988): 101–10. https://doi.org/10.1016/0097-3165(88)90044-1.
Calderbank AR. Geometric invariants for quasi-symmetric designs. Journal of Combinatorial Theory, Series A. 1988 Jan 1;47(1):101–10.
Calderbank, A. R. “Geometric invariants for quasi-symmetric designs.” Journal of Combinatorial Theory, Series A, vol. 47, no. 1, Jan. 1988, pp. 101–10. Scopus, doi:10.1016/0097-3165(88)90044-1.
Calderbank AR. Geometric invariants for quasi-symmetric designs. Journal of Combinatorial Theory, Series A. 1988 Jan 1;47(1):101–110.
Journal cover image

Published In

Journal of Combinatorial Theory, Series A

DOI

EISSN

1096-0899

ISSN

0097-3165

Publication Date

January 1, 1988

Volume

47

Issue

1

Start / End Page

101 / 110

Related Subject Headings

  • Computation Theory & Mathematics
  • 0101 Pure Mathematics