Skip to main content
Journal cover image

Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene.

Publication ,  Journal Article
Andresen, BS; Jensen, TG; Bross, P; Knudsen, I; Winter, V; Kølvraa, S; Bolund, L; Ding, JH; Chen, YT; Van Hove, JL
Published in: Am J Hum Genet
June 1994

Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most commonly recognized defect of the mitochondrial beta-oxidation in humans. It is a potentially fatal, autosomal recessive inherited defect. Most patients with MCAD deficiency are homozygous for a single disease-causing mutation (G985), causing a change from lysine to glutamate at position 304 (K304E) in the mature MCAD. Only seven non-G985 mutations, all of which are rare, have been reported. Because the G985 mutation and three of the non-G985 mutations are located in exon 11, it has been suggested that this exon may be a mutational hot spot. Here we describe the results from sequence analysis of exon 11 and part of the flanking introns from 36 compound heterozygous patients with MCAD deficiency. We have identified four previously unknown disease-causing mutations (M301T, S311R, R324X, and E359X) and two silent mutations in exon 11. Our results show that exon 11 is not especially mutation prone. We demonstrate that two of the identified disease-causing mutations can be detected by restriction enzyme digestion of the PCR product from the assay for the G985 mutation, a discovery that makes this assay even more useful than before. On the basis of expression of wild-type and mutant MCAD protein in COS-7 cells, we show that the identified mutations abolish MCAD enzyme activity and that they therefore must be disease causing. The M301T, S311R, and K304E mutations are located in helix H, which makes up part of the dimer-dimer interface of the MCAD tetramer. On the basis of the three-dimensional structure of MCAD and the results from the COS-7 expression experiments, we speculate that the primary effect of the M301T and S311R mutations is on correct folding/tetramer assembly, as it has previously been observed for the K304E mutation.

Duke Scholars

Published In

Am J Hum Genet

ISSN

0002-9297

Publication Date

June 1994

Volume

54

Issue

6

Start / End Page

975 / 988

Location

United States

Related Subject Headings

  • Transfection
  • RNA, Messenger
  • Polymerase Chain Reaction
  • Point Mutation
  • Pedigree
  • Mutagenesis, Site-Directed
  • Molecular Sequence Data
  • Models, Molecular
  • Male
  • Humans
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Andresen, B. S., Jensen, T. G., Bross, P., Knudsen, I., Winter, V., Kølvraa, S., … Van Hove, J. L. (1994). Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene. Am J Hum Genet, 54(6), 975–988.
Andresen, B. S., T. G. Jensen, P. Bross, I. Knudsen, V. Winter, S. Kølvraa, L. Bolund, J. H. Ding, Y. T. Chen, and J. L. Van Hove. “Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene.Am J Hum Genet 54, no. 6 (June 1994): 975–88.
Andresen BS, Jensen TG, Bross P, Knudsen I, Winter V, Kølvraa S, et al. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene. Am J Hum Genet. 1994 Jun;54(6):975–88.
Andresen, B. S., et al. “Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene.Am J Hum Genet, vol. 54, no. 6, June 1994, pp. 975–88.
Andresen BS, Jensen TG, Bross P, Knudsen I, Winter V, Kølvraa S, Bolund L, Ding JH, Chen YT, Van Hove JL. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene. Am J Hum Genet. 1994 Jun;54(6):975–988.
Journal cover image

Published In

Am J Hum Genet

ISSN

0002-9297

Publication Date

June 1994

Volume

54

Issue

6

Start / End Page

975 / 988

Location

United States

Related Subject Headings

  • Transfection
  • RNA, Messenger
  • Polymerase Chain Reaction
  • Point Mutation
  • Pedigree
  • Mutagenesis, Site-Directed
  • Molecular Sequence Data
  • Models, Molecular
  • Male
  • Humans