Skip to main content

A human novel gene DERPC on 16q22.1 inhibits prostate tumor cell growth and its expression is decreased in prostate and renal tumors.

Publication ,  Journal Article
Sun, M; Ma, L; Xu, L; Li, J; Zhang, W; Petrovics, G; Makarem, M; Sesterhenn, I; Zhang, M; Blanchette-Mackie, EJ; Moul, J; Srivastava, S; Zou, Z
Published in: Mol Med
October 2002

BACKGROUND: Deletion of chromosome 16q is frequently associated with diverse tumors. Numerous studies strongly suggest the presence of one or more tumor suppressor genes on chromosome 16q22 to 16qter including the widely studied cadherin gene family. However, the specific tumor suppressor genes residing in this region need better definition and characterization. MATERIAL AND METHODS: Standard molecular biology approaches have been used to clone and characterize the DERPC cDNA and its protein product on chromosome 16q22.1. Northern blotting was used to define the expression pattern in a multiple human tissue blots. DERPC expression was examined in multi-tumor array (Clontech, CA, USA) dot blot as well as in laser capture microdissection (LCM) derived prostate cancer (CaP) specimens by quantitative RT-PCR. Western blot analysis and a fluorescent microscopy were used to characterize the molecular size and the cellular location of green fluorescent protein (GFP)-tagged DERPC fusion proteins. A colony formation assay was conducted to determine the effects of DERPC expression on tumor cell growth. RESULTS: A novel gene DERPC (Decreased Expression in Renal and Prostate Cancer) was identified and characterized. DERPC encoded a strong basic, proline- and glycine-rich nuclear protein. DERPC was ubiquitously expressed, with abundant expression in kidney, skeletal muscle, testis, liver, ovary, and heart and moderate expression in prostate. DERPC expression was reduced in renal (67%) and prostate tumors (33%). Expression of DERPC has inhibitory potential on CaP cell growth. Further, overexpression of DERPC in LNCaP cells caused alterations of nuclear morphology. CONCLUSION: This study suggests that decreased expression of DERPC may be implicated in tumorigenesis of renal and CaPs.

Duke Scholars

Published In

Mol Med

ISSN

1076-1551

Publication Date

October 2002

Volume

8

Issue

10

Start / End Page

655 / 663

Location

England

Related Subject Headings

  • Sequence Homology, Nucleic Acid
  • RNA, Messenger
  • Proteins
  • Prostatic Neoplasms
  • Nuclear Proteins
  • Molecular Sequence Data
  • Male
  • Kidney Neoplasms
  • Immunology
  • Humans
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sun, M., Ma, L., Xu, L., Li, J., Zhang, W., Petrovics, G., … Zou, Z. (2002). A human novel gene DERPC on 16q22.1 inhibits prostate tumor cell growth and its expression is decreased in prostate and renal tumors. Mol Med, 8(10), 655–663.
Sun, Mei, Lanfeng Ma, Linda Xu, Jia Li, Wei Zhang, Gyorgy Petrovics, Mazen Makarem, et al. “A human novel gene DERPC on 16q22.1 inhibits prostate tumor cell growth and its expression is decreased in prostate and renal tumors.Mol Med 8, no. 10 (October 2002): 655–63.
Sun M, Ma L, Xu L, Li J, Zhang W, Petrovics G, Makarem M, Sesterhenn I, Zhang M, Blanchette-Mackie EJ, Moul J, Srivastava S, Zou Z. A human novel gene DERPC on 16q22.1 inhibits prostate tumor cell growth and its expression is decreased in prostate and renal tumors. Mol Med. 2002 Oct;8(10):655–663.

Published In

Mol Med

ISSN

1076-1551

Publication Date

October 2002

Volume

8

Issue

10

Start / End Page

655 / 663

Location

England

Related Subject Headings

  • Sequence Homology, Nucleic Acid
  • RNA, Messenger
  • Proteins
  • Prostatic Neoplasms
  • Nuclear Proteins
  • Molecular Sequence Data
  • Male
  • Kidney Neoplasms
  • Immunology
  • Humans