Skip to main content

Using fractal downscaling of satellite precipitation products for hydrometeorological applications

Publication ,  Journal Article
Tao, K; Barros, AP
Published in: Journal of Atmospheric and Oceanic Technology
March 1, 2010

The objective of spatial downscaling strategies is to increase the information content of coarse datasets at smaller scales. In the case of quantitative precipitation estimation (QPE) for hydrological applications, the goal is to close the scale gap between the spatial resolution of coarse datasets (e.g., gridded satellite precipitation products at resolution L × L) and the high resolution (l × l; L»l) necessary to capture the spatial features that determine spatial variability of water flows and water stores in the landscape. In essence, the downscaling process consists of weaving subgrid-scale heterogeneity over a desired range of wavelengths in the original field. The defining question is, which properties, statistical and otherwise, of the target field (the known observable at the desired spatial resolution) should be matched, with the caveat that downscaling methods be as a general as possible and therefore ideally without case-specific constraints and/or calibration requirements? Here, the attention is focused on two simple fractal downscaling methods using iterated functions systems (IFS) and fractal Brownian surfaces (FBS) that meet this requirement. The two methods were applied to disaggregate spatially 27 summertime convective storms in the central United States during 2007 at three consecutive times (1800, 2100, and 0000 UTC, thus 81 fields overall) from the Tropical Rainfall Measuring Mission (TRMM) version 6 (V6) 3B42 precipitation product (~25-km grid spacing) to the same resolution as the NCEP stage IV products (~4-km grid spacing). Results from bilinear interpolation are used as the control. A fundamental distinction between IFS and FBS is that the latter implies a distribution of downscaled fields and thus an ensemble solution, whereas the former provides a single solution. The downscaling effectiveness is assessed using fractal measures (the spectral exponent β, fractal dimension D, Hurst coefficient H, and roughness amplitude R) and traditional operational scores statistics scores [false alarm rate (FR), probability of detection (PD), threat score (TS), and Heidke skill score (HSS)], as well as bias and the root-mean-square error (RMSE). The results show that both IFS and FBS fractal interpolation perform well with regard to operational skill scores, and they meet the additional requirement of generating structurally consistent fields. Furthermore, confidence intervals can be directly generated from the FBS ensemble. The results were used to diagnose errors relevant for hydrometeorological applications, in particular a spatial displacement with characteristic length of at least 50 km (2500 km2) in the location of peak rainfall intensities for the cases studied. © 2010 American Meteorological Society.

Duke Scholars

Published In

Journal of Atmospheric and Oceanic Technology

DOI

ISSN

0739-0572

Publication Date

March 1, 2010

Volume

27

Issue

3

Start / End Page

409 / 427

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 3708 Oceanography
  • 3701 Atmospheric sciences
  • 0911 Maritime Engineering
  • 0405 Oceanography
  • 0401 Atmospheric Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Tao, K., & Barros, A. P. (2010). Using fractal downscaling of satellite precipitation products for hydrometeorological applications. Journal of Atmospheric and Oceanic Technology, 27(3), 409–427. https://doi.org/10.1175/2009JTECHA1219.1
Tao, K., and A. P. Barros. “Using fractal downscaling of satellite precipitation products for hydrometeorological applications.” Journal of Atmospheric and Oceanic Technology 27, no. 3 (March 1, 2010): 409–27. https://doi.org/10.1175/2009JTECHA1219.1.
Tao K, Barros AP. Using fractal downscaling of satellite precipitation products for hydrometeorological applications. Journal of Atmospheric and Oceanic Technology. 2010 Mar 1;27(3):409–27.
Tao, K., and A. P. Barros. “Using fractal downscaling of satellite precipitation products for hydrometeorological applications.” Journal of Atmospheric and Oceanic Technology, vol. 27, no. 3, Mar. 2010, pp. 409–27. Scopus, doi:10.1175/2009JTECHA1219.1.
Tao K, Barros AP. Using fractal downscaling of satellite precipitation products for hydrometeorological applications. Journal of Atmospheric and Oceanic Technology. 2010 Mar 1;27(3):409–427.

Published In

Journal of Atmospheric and Oceanic Technology

DOI

ISSN

0739-0572

Publication Date

March 1, 2010

Volume

27

Issue

3

Start / End Page

409 / 427

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 3708 Oceanography
  • 3701 Atmospheric sciences
  • 0911 Maritime Engineering
  • 0405 Oceanography
  • 0401 Atmospheric Sciences