Experiments in short-term precipitation forecasting using artificial neural networks
Accurate, timely, site-specific forecasts of precipitation are important for accurately predicting streamflow and flash floods in small drainage basins. However, presently available numerical weather prediction models do not generally provide forecasts with the accuracy and/or resolution appropriate for this task. A wide variety of approaches to small-scale, short-term precipitation forecasting have been investigated by numerous authors: this paper describes a simple precipitation forecasting model based on artificial neural networks. The model uses the radiosonde-based V(M)-HPa wind direction and antecedent precipitation data from a rain gauge network to generate short-term (0-6 h) precipitation forecasts for a target location. The performance of the model is illustrated for a gauge in eastern Pennsylvania.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences
- 0102 Applied Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences
- 0102 Applied Mathematics