Design of a spherical focal surface using close-packed relay optics.
This paper presents a design strategy for close-packing circular finite-conjugate optics to create a spherical focal surface. Efficient packing of circles on a sphere is commonly referred to as the Tammes problem and various methods for packing optimization have been investigated, such as iterative point-repulsion simulations. The method for generating the circle distributions proposed here is based on a distorted icosahedral geodesic. This has the advantages of high degrees of symmetry, minimized variations in circle separations, and computationally inexpensive generation of configurations with N circles, where N is the number of vertices on the geodesic. These properties are especially beneficial for making a continuous focal surface and results show that circle packing densities near steady-state maximum values found with other methods can be achieved.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Optics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Optics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics