Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery
Compressed sensing is a novel technique to acquire sparse signals with few measurements. Normally, compressed sensing uses random projections as measurements. Here we design deterministic measurements and an algorithm to accomplish signal recovery with computational efficiency. A measurement matrix is designed with chirp sequences forming the columns. Chirps are used since an efficient method using FFTs can recover the parameters of a small superposition. We show that this type of matrix is valid as compressed sensing measurements. This is done by bounding the eigenvalues of sub-matrices, as well as an empirical comparison with random projections. Further, by implementing our algorithm, simulations show successful recovery of signals with sparsity levels similar to those possible by matching pursuit with random measurements. For sufficiently sparse signals, our algorithm recovers the signal with computational complexity O (K log K) for K measurements. This is a significant improvement over existing algorithms. Crown Copyright © 2008.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics