Energy-efficient video transmission scheduling for wireless peer-to-peer live streaming
The Peer-to-Peer (P2P) streaming has shown as an effective solution for wireline video applications, while for the wireless video streaming applications, the limited radio resource and battery energy are the main constraints on the way of P2P applications. An important issue in live video streaming quality of service is to avoid playback buffer underflow, and a challenge from wireless applications is the desire of energy efficiency. The problem we try to solve is how to utilize P2P schemes in video streaming and schedule the video transmission among peers to minimize the "freeze- ups" in playback caused by buffer underflow. In this work, we propose energy-efficient algorithm for the video transmission scheduling in wireless P2P live streaming system, to minimize the playback freeze-ups among peers. Further the algorithm is extended to two scenarios: peers' reluctance of consuming battery energy and allowing overhearing, with alternative energy-efficient algorithms proposed for the second scenario. Numerical results show the effectiveness of the proposed algorithms. The results also demonstrate that peers' selfishness may reduce the energy efficiency, but allowing overhearing could increase energy efficiency. ©2009 IEEE.