Skip to main content

Layering as optimization decomposition: A mathematical theory of network architectures

Publication ,  Journal Article
Chiang, M; Low, SH; Calderbank, AR; Doyle, JC
Published in: Proceedings of the IEEE
January 1, 2007

Network protocols in layered architectures have historically been obtained on an ad hoc basis, and many of the recent cross-layer designs are also conducted through piecemeal approaches. Network protocol stacks may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems. This paper presents a survey of the recent efforts towards a systematic understanding of layering as optimization decomposition, where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. There can be many alternative decompositions, leading to a choice of different layering architectures. This paper surveys the current status of horizontal decomposition into distributed computation, and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and channel coding. Key messages and methods arising from many recent works are summarized, and open issues discussed. Through case studies, it is illustrated how layering as Optimization Decomposition provides a common language to think about modularization in the face of complex, networked interactions, a unifying, top-down approach to design protocol stacks, and a mathematical theory of network architectures © 2006 IEEE.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proceedings of the IEEE

DOI

ISSN

0018-9219

Publication Date

January 1, 2007

Volume

95

Issue

1

Start / End Page

255 / 312

Related Subject Headings

  • 4009 Electronics, sensors and digital hardware
  • 0906 Electrical and Electronic Engineering
  • 0903 Biomedical Engineering
  • 0801 Artificial Intelligence and Image Processing
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chiang, M., Low, S. H., Calderbank, A. R., & Doyle, J. C. (2007). Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE, 95(1), 255–312. https://doi.org/10.1109/JPROC.2006.887322
Chiang, M., S. H. Low, A. R. Calderbank, and J. C. Doyle. “Layering as optimization decomposition: A mathematical theory of network architectures.” Proceedings of the IEEE 95, no. 1 (January 1, 2007): 255–312. https://doi.org/10.1109/JPROC.2006.887322.
Chiang M, Low SH, Calderbank AR, Doyle JC. Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE. 2007 Jan 1;95(1):255–312.
Chiang, M., et al. “Layering as optimization decomposition: A mathematical theory of network architectures.” Proceedings of the IEEE, vol. 95, no. 1, Jan. 2007, pp. 255–312. Scopus, doi:10.1109/JPROC.2006.887322.
Chiang M, Low SH, Calderbank AR, Doyle JC. Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE. 2007 Jan 1;95(1):255–312.

Published In

Proceedings of the IEEE

DOI

ISSN

0018-9219

Publication Date

January 1, 2007

Volume

95

Issue

1

Start / End Page

255 / 312

Related Subject Headings

  • 4009 Electronics, sensors and digital hardware
  • 0906 Electrical and Electronic Engineering
  • 0903 Biomedical Engineering
  • 0801 Artificial Intelligence and Image Processing