Covering bounds for codes
Publication
, Journal Article
Calderbank, AR
Published in: Journal of Combinatorial Theory, Series A
January 1, 1992
Given an [n, k]R code C, and a subcode H of C with codimension j, define SHj(C) = maxx∈F2n {d(x, H) + d(x, C H)}, and define the j-norm, Sj(C) to be the minimum value of SHj(C) as H ranges over the subcodes with codimension j. We prove that if k (n + 1) > R (R + 1), then S1(C) ≤ 2R + 1. © 1992.
Duke Scholars
Published In
Journal of Combinatorial Theory, Series A
DOI
EISSN
1096-0899
ISSN
0097-3165
Publication Date
January 1, 1992
Volume
60
Issue
1
Start / End Page
117 / 122
Related Subject Headings
- Computation Theory & Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Calderbank, A. R. (1992). Covering bounds for codes. Journal of Combinatorial Theory, Series A, 60(1), 117–122. https://doi.org/10.1016/0097-3165(92)90041-R
Calderbank, A. R. “Covering bounds for codes.” Journal of Combinatorial Theory, Series A 60, no. 1 (January 1, 1992): 117–22. https://doi.org/10.1016/0097-3165(92)90041-R.
Calderbank AR. Covering bounds for codes. Journal of Combinatorial Theory, Series A. 1992 Jan 1;60(1):117–22.
Calderbank, A. R. “Covering bounds for codes.” Journal of Combinatorial Theory, Series A, vol. 60, no. 1, Jan. 1992, pp. 117–22. Scopus, doi:10.1016/0097-3165(92)90041-R.
Calderbank AR. Covering bounds for codes. Journal of Combinatorial Theory, Series A. 1992 Jan 1;60(1):117–122.
Published In
Journal of Combinatorial Theory, Series A
DOI
EISSN
1096-0899
ISSN
0097-3165
Publication Date
January 1, 1992
Volume
60
Issue
1
Start / End Page
117 / 122
Related Subject Headings
- Computation Theory & Mathematics
- 0101 Pure Mathematics