Covering radius and the chromatic number of Kneser graphs
Publication
, Journal Article
Calderbank, AR
Published in: Journal of Combinatorial Theory, Series A
January 1, 1990
Let C be a binary linear code with covering radius R and let C0 be a subcode of C with codimension i. We prove that the covering radius R0 of C satisfies R0 ≤ 2R + 2i - 1, by setting up a graph coloring problem involving Kneser graphs. © 1990.
Duke Scholars
Published In
Journal of Combinatorial Theory, Series A
DOI
EISSN
1096-0899
ISSN
0097-3165
Publication Date
January 1, 1990
Volume
54
Issue
1
Start / End Page
129 / 131
Related Subject Headings
- Computation Theory & Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Calderbank, A. R. (1990). Covering radius and the chromatic number of Kneser graphs. Journal of Combinatorial Theory, Series A, 54(1), 129–131. https://doi.org/10.1016/0097-3165(90)90011-K
Calderbank, A. R. “Covering radius and the chromatic number of Kneser graphs.” Journal of Combinatorial Theory, Series A 54, no. 1 (January 1, 1990): 129–31. https://doi.org/10.1016/0097-3165(90)90011-K.
Calderbank AR. Covering radius and the chromatic number of Kneser graphs. Journal of Combinatorial Theory, Series A. 1990 Jan 1;54(1):129–31.
Calderbank, A. R. “Covering radius and the chromatic number of Kneser graphs.” Journal of Combinatorial Theory, Series A, vol. 54, no. 1, Jan. 1990, pp. 129–31. Scopus, doi:10.1016/0097-3165(90)90011-K.
Calderbank AR. Covering radius and the chromatic number of Kneser graphs. Journal of Combinatorial Theory, Series A. 1990 Jan 1;54(1):129–131.
Published In
Journal of Combinatorial Theory, Series A
DOI
EISSN
1096-0899
ISSN
0097-3165
Publication Date
January 1, 1990
Volume
54
Issue
1
Start / End Page
129 / 131
Related Subject Headings
- Computation Theory & Mathematics
- 0101 Pure Mathematics