Skip to main content
Journal cover image

Covering radius and the chromatic number of Kneser graphs

Publication ,  Journal Article
Calderbank, AR
Published in: Journal of Combinatorial Theory, Series A
January 1, 1990

Let C be a binary linear code with covering radius R and let C0 be a subcode of C with codimension i. We prove that the covering radius R0 of C satisfies R0 ≤ 2R + 2i - 1, by setting up a graph coloring problem involving Kneser graphs. © 1990.

Duke Scholars

Published In

Journal of Combinatorial Theory, Series A

DOI

EISSN

1096-0899

ISSN

0097-3165

Publication Date

January 1, 1990

Volume

54

Issue

1

Start / End Page

129 / 131

Related Subject Headings

  • Computation Theory & Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Calderbank, A. R. (1990). Covering radius and the chromatic number of Kneser graphs. Journal of Combinatorial Theory, Series A, 54(1), 129–131. https://doi.org/10.1016/0097-3165(90)90011-K
Calderbank, A. R. “Covering radius and the chromatic number of Kneser graphs.” Journal of Combinatorial Theory, Series A 54, no. 1 (January 1, 1990): 129–31. https://doi.org/10.1016/0097-3165(90)90011-K.
Calderbank AR. Covering radius and the chromatic number of Kneser graphs. Journal of Combinatorial Theory, Series A. 1990 Jan 1;54(1):129–31.
Calderbank, A. R. “Covering radius and the chromatic number of Kneser graphs.” Journal of Combinatorial Theory, Series A, vol. 54, no. 1, Jan. 1990, pp. 129–31. Scopus, doi:10.1016/0097-3165(90)90011-K.
Calderbank AR. Covering radius and the chromatic number of Kneser graphs. Journal of Combinatorial Theory, Series A. 1990 Jan 1;54(1):129–131.
Journal cover image

Published In

Journal of Combinatorial Theory, Series A

DOI

EISSN

1096-0899

ISSN

0097-3165

Publication Date

January 1, 1990

Volume

54

Issue

1

Start / End Page

129 / 131

Related Subject Headings

  • Computation Theory & Mathematics
  • 0101 Pure Mathematics