The Haemers partial geometry and the Steiner system S(5, 8, 24)
Publication
, Journal Article
Calderbank, R; Wales, DB
Published in: Discrete Mathematics
January 1, 1984
Haemers has constructed a partial geometry with parameters s = 4, t = 17, and α = 2, using properties of the Hoffman-Singleton graph. We describe this geometry in terms of the Steiner system S(5, 8, 24). © 1984.
Duke Scholars
Published In
Discrete Mathematics
DOI
ISSN
0012-365X
Publication Date
January 1, 1984
Volume
51
Issue
2
Start / End Page
125 / 136
Related Subject Headings
- Computation Theory & Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Calderbank, R., & Wales, D. B. (1984). The Haemers partial geometry and the Steiner system S(5, 8, 24). Discrete Mathematics, 51(2), 125–136. https://doi.org/10.1016/0012-365X(84)90066-9
Calderbank, R., and D. B. Wales. “The Haemers partial geometry and the Steiner system S(5, 8, 24).” Discrete Mathematics 51, no. 2 (January 1, 1984): 125–36. https://doi.org/10.1016/0012-365X(84)90066-9.
Calderbank R, Wales DB. The Haemers partial geometry and the Steiner system S(5, 8, 24). Discrete Mathematics. 1984 Jan 1;51(2):125–36.
Calderbank, R., and D. B. Wales. “The Haemers partial geometry and the Steiner system S(5, 8, 24).” Discrete Mathematics, vol. 51, no. 2, Jan. 1984, pp. 125–36. Scopus, doi:10.1016/0012-365X(84)90066-9.
Calderbank R, Wales DB. The Haemers partial geometry and the Steiner system S(5, 8, 24). Discrete Mathematics. 1984 Jan 1;51(2):125–136.
Published In
Discrete Mathematics
DOI
ISSN
0012-365X
Publication Date
January 1, 1984
Volume
51
Issue
2
Start / End Page
125 / 136
Related Subject Headings
- Computation Theory & Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics