Skip to main content
Journal cover image

Two-weight ternary codes and the equation y2 = 4 × 3a + 13

Publication ,  Journal Article
Bremner, A; Calderbank, R; Hanlon, P; Morton, P; Wolfskill, J
Published in: Journal of Number Theory
January 1, 1983

This paper determines the parameters of all two-weight ternary codes C with the property that the minimum weight in the dual code C⊥ is at least 4. This yields a characterization of uniformly packed ternary [n, k, 4] codes. The proof rests on finding all integer solutions of the equation y2 = 4 × 3a + 13. © 1983.

Duke Scholars

Published In

Journal of Number Theory

DOI

ISSN

0022-314X

Publication Date

January 1, 1983

Volume

16

Issue

2

Start / End Page

212 / 234

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Bremner, A., Calderbank, R., Hanlon, P., Morton, P., & Wolfskill, J. (1983). Two-weight ternary codes and the equation y2 = 4 × 3a + 13. Journal of Number Theory, 16(2), 212–234. https://doi.org/10.1016/0022-314X(83)90042-2
Bremner, A., R. Calderbank, P. Hanlon, P. Morton, and J. Wolfskill. “Two-weight ternary codes and the equation y2 = 4 × 3a + 13.” Journal of Number Theory 16, no. 2 (January 1, 1983): 212–34. https://doi.org/10.1016/0022-314X(83)90042-2.
Bremner A, Calderbank R, Hanlon P, Morton P, Wolfskill J. Two-weight ternary codes and the equation y2 = 4 × 3a + 13. Journal of Number Theory. 1983 Jan 1;16(2):212–34.
Bremner, A., et al. “Two-weight ternary codes and the equation y2 = 4 × 3a + 13.” Journal of Number Theory, vol. 16, no. 2, Jan. 1983, pp. 212–34. Scopus, doi:10.1016/0022-314X(83)90042-2.
Bremner A, Calderbank R, Hanlon P, Morton P, Wolfskill J. Two-weight ternary codes and the equation y2 = 4 × 3a + 13. Journal of Number Theory. 1983 Jan 1;16(2):212–234.
Journal cover image

Published In

Journal of Number Theory

DOI

ISSN

0022-314X

Publication Date

January 1, 1983

Volume

16

Issue

2

Start / End Page

212 / 234

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics