Skip to main content

Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptors and adenosine triphosphate-sensitive potassium channels.

Publication ,  Journal Article
Roscoe, AK; Christensen, JD; Lynch, C
Published in: Anesthesiology
June 2000

BACKGROUND: Volatile anesthetics produce differing degrees of myocardial protection in animal models of ischemia. The purpose of the current investigation was to determine the influence of isoflurane and halothane on myocardial protection in a human model of simulated ischemia and the role of adenosine A1 receptors and adenosine triphosphate-sensitive potassium (KATP) channels in the anesthetic pathway. METHODS: Human atrial trabecular muscles were superfused with oxygenated Krebs-Henseleit buffer and stimulated at 1 Hz, with recording of maximum contractile force. Fifteen minutes before a 30-min anoxic insult, muscles were pretreated for 5 min with either anoxia, the A1 agonist N6-cyclohexyladenosine, 1% halothane or 1.2% isoflurane. These treatments were also performed in the presence of either the KATP channel antagonist glibenclamide or the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Anesthetic effects were also determined on KATP currents in isolated whole cell voltage-clamped human atrial myocytes. RESULTS: Recovery of force (recorded 60 min after anoxia) in isoflurane-pretreated muscles was reduced from 76.6 +/- 7.5% of baseline to 43.7 +/- 7.1% by pretreatment with glibenclamide, and to 52.5 +/- 6.2% by pretreatment with DPCPX. Halothane treatment provided no cardioprotection and seemed to inhibit protection by anoxic preconditioning. Halothane decreased whole cell KATP currents in atrial myocytes, whereas isoflurane had no effects. CONCLUSIONS: This study demonstrates the cardioprotective effects of isoflurane in contrast to the effects of halothane. Furthermore, A1 receptors and KATP channels seem to mediate the beneficial effects of anoxia and isoflurane in human myocardium.

Duke Scholars

Published In

Anesthesiology

DOI

ISSN

0003-3022

Publication Date

June 2000

Volume

92

Issue

6

Start / End Page

1692 / 1701

Location

United States

Related Subject Headings

  • Receptors, Purinergic P1
  • Potassium Channels
  • Patch-Clamp Techniques
  • Myocardium
  • Myocardial Contraction
  • Isoflurane
  • Ischemic Preconditioning
  • In Vitro Techniques
  • Hypoglycemic Agents
  • Humans
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Roscoe, A. K., Christensen, J. D., & Lynch, C. (2000). Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptors and adenosine triphosphate-sensitive potassium channels. Anesthesiology, 92(6), 1692–1701. https://doi.org/10.1097/00000542-200006000-00029
Roscoe, A. K., J. D. Christensen, and C. Lynch. “Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptors and adenosine triphosphate-sensitive potassium channels.Anesthesiology 92, no. 6 (June 2000): 1692–1701. https://doi.org/10.1097/00000542-200006000-00029.
Roscoe, A. K., et al. “Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptors and adenosine triphosphate-sensitive potassium channels.Anesthesiology, vol. 92, no. 6, June 2000, pp. 1692–701. Pubmed, doi:10.1097/00000542-200006000-00029.

Published In

Anesthesiology

DOI

ISSN

0003-3022

Publication Date

June 2000

Volume

92

Issue

6

Start / End Page

1692 / 1701

Location

United States

Related Subject Headings

  • Receptors, Purinergic P1
  • Potassium Channels
  • Patch-Clamp Techniques
  • Myocardium
  • Myocardial Contraction
  • Isoflurane
  • Ischemic Preconditioning
  • In Vitro Techniques
  • Hypoglycemic Agents
  • Humans